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ABSTRACT  

The rapid growth of Low Cost Carriers (LCC) and their simplified fare structures has created 
“semi-restricted” fare structures where lower classes are undifferentiated except for price, while 
higher fare classes are still differentiated by various advance purchase and booking restrictions.  
The problem this causes is two-fold: first, traditional revenue management systems, which 
operate based on the assumption of demand independence, will see demand “spiral down” into 
the lowest booking classes as passengers will buy the lowest available fare in the absence of fare 
restrictions.  Second, airlines must maximize network revenues across two different fare 
structures, a more-restricted structure used on markets without an LCC presence, and the semi-
restricted structure for markets where LCC competition exists.  

This thesis describes methods of dealing with these two problems: Hybrid Forecasting (HF), 
which forecasts “product-oriented” demand using traditional forecasting methods while 
simultaneously forecasting “price-oriented” demand for those passengers who will buy the lowest 
available fare, and Fare Adjustment (FA), which is used at the booking limit optimizer level to 
account for the sell-up potential of passengers (probability a passenger will book in a higher class 
if his original booking class is denied).  Fare Adjustment allows the airline to deal with multiple 
fare structures separately.  The goal of this thesis is to provide a comprehensive summary of 
results when an airline uses HF and FA simultaneously in two different multiple fare structure, 
competitive networks.  An alternate Fare Adjustment formulation will also be introduced and 
tested in these competitive environments.  

Results from the Passenger Origin-Destination Simulator (PODS) demonstrate that in a more 
restrictive network, HF and FA used in conjunction with one another achieve revenue increases 
of approximately 2-4% above traditional forecasting methods.  In an environment with a fully 
unrestricted fare structure for LCC markets, HF and FA together generate revenue gains of over 
20% above traditional methods.     
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CHAPTER 1 
INTRODUCTION  

Although it has confused business and leisure travelers alike, Revenue Management 
(RM) has played a large role in the profitability and sustainability of airlines worldwide.  
Perhaps the best and most succinct definition of RM comes from American Airlines, who 
in their 1987 annual report described RM as “selling the right seats to the right customers 
at the right prices”1.  Even after 20 years, airlines are still working toward this seemingly 
simplistic goal in order to maximize revenues.  

Weatherford2 more accurately describes the airline situation as Perishable-Asset Revenue 
Management (PARM).  When a flight takes off with empty seats, the revenue opportunity 
for those seats is lost forever, thus leading to the assertion that airlines oversee the most 
perishable inventory in the world.  The task facing an airline is how best to allocate these 
perishable seats on an individual flight leg to passengers flying on multiple Origin-
Destination (O-D) itineraries, possibly from different fare structures, in order to 
maximize total network revenue.  The ultimate (albeit unattainable) goal of RM is to sell 
passengers seats at their maximum willingness-to-pay (WTP).  

The rest of this chapter will provide a brief history of revenue management in the airline 
industry, as well as develop the need for and introduce RM techniques to be used to 
maximize revenues in the new fare structure environment encountered by the Network 
Legacy Carriers (NLC) due to the rise in prominence of Low Cost Carriers (LCC).    

1.1 OVERVIEW OF REVENUE MANAGEMENT   

The US airline industry was regulated by the Civil Aeronautics Board (CAB) until 1978, 
controlling both the routes carriers could fly and what fares they could charge on those 
routes3.  However, airlines were able to perform a small portion of RM in the form of 
overbooking.  They were able to forecast the number of passengers who would cancel 
reservations and simply not show up for the flight (no-shows), and therefore be able to 
calculate how many bookings above the actual capacity of the aircraft they would need to 
accept in order to achieve a high load factor without having large costs due to denied 
boardings (hotel and food vouchers, loss of customer goodwill, etc.).      

                                                

   

1 Smith, B.C., J.F. Leimkuhler, R.M. Darrow. (1992). Yield Management at American Airlines. Interfaces. 
Volume 22, Issue 1, pp. 8-31. 
2 Weatherford, L.R. (1991). Perishable Asset Revenue Management in General Business Situations, Ph.D. 
thesis, Darden Graduate School of Business Administration, University of Virginia, Charlottesville, VA. 
3 General Accounting Office. (1999). Airline Deregulation: Changes in Airfares, Service Quality, and 
Barriers to Entry. Report to Congressional Requesters. GAO/RCED-99-92. Washington, D.C. 
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The first commonly accepted example of airline RM came from overseas, in the United 
Kingdom.  In the early 1970’s BOAC (now known as British Airways) began offering 
two fares, with one being a lower fare for those passengers who were able to book 
twenty-one days in advance.  This was the beginning of what was then called Yield 
Management (YM), as BOAC had to decide how many seats to keep available for the 
later booking passengers who would purchase the higher fare4.  

Back in the US, the CAB realized that the regulations on air travel were restricting the 
growth of the industry, and so in 1978 Congress deregulated the industry3.  This sudden 
change brought about the rapid increase in RM activity, as airlines were now able to not 
only enter more markets, but were also free to charge based on demand in a market, not 
based on distance as was previously the case in the regulated environment5. Multiple 
airlines were able to offer service in the same markets, which gave passengers many 
more options as they were able to choose between multiple airlines and fare classes in a 
single market.  As prices dropped due to this increase in competition, airlines were forced 
to develop different pricing structures to generate higher revenues by charging fares that 
were closer to an individual passenger’s willingness-to-pay.  

Ever since deregulation, airlines have focused on the two different types of passengers: 
business and leisure.  Business travelers are characterized by purchasing close to 
departure, sensitivity to schedule and frequency, aversion to most fare restrictions (min 
stay, non-refundability, etc.), and willingness to pay higher prices as a result.  On the 
other hand, leisure travelers normally plan ahead of time and are able to purchase tickets 
early in the booking process, are not sensitive to schedule or frequency, and are not as 
sensitive to fare restrictions, and are thus willing to buy lower priced tickets.  In order for 
RM systems to be effective, they must have an accurate forecast of demand for these two 
unique sets of passengers.    

Airlines found that in order to capture higher revenues and target business and leisure 
travelers separately, they would have to offer more than one fare class.   Otherwise, they 
would have to operate under one of two conditions outlined in Figure 1-1: overprotection 
or dilution.  If an airline’s objective is to focus on high-yield business travelers and 
charge only a single high fare for the entire booking process, flights will leave with high 
yields but low load factors as there will be empty seats at this full-fare price.  There will 
not be enough demand at this high price to fill seats and thus revenue will be lost due to 
the low number of bookings.  The term “Yield Management” implies incorrectly that 
yield maximization is the goal, and has been gradually phased out in favor of “Revenue 

                                                

   

4 McGill, J.I., G.J. van Ryzin. (1999). Revenue Management: Research Overviews and Prospects. 
Transportation Science, Volume 33, Issue 2, pp. 233-256. 
5 Pickrell, D. (1991). The regulation and deregulation of US airlines. Airline deregulation: international 
experiences. Ed: Button, K. David Fulton Publishers, London, pp. 5-47.  
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Management”, since a flight with a single full-fare passenger has the highest yield, but 
not the highest revenue6.    

Conversely, an airline can attempt to target low-paying leisure travelers by offering a 
single low fare throughout the booking process.  This has the opposite effect, as flights 
will leave with high load factors but low yields.  This is known as dilution, when revenue 
is lost because high-paying business travelers are allowed to buy fares far below their 
willingness-to-pay.  

Price

Quantity Quantity

Price

Aircraft 
Capacity

Aircraft 
Capacity

Demand Demand

Full 
Fare

Captured 
Revenue

Lost Revenue due 
to Empty Seats

Lost Revenue 
from Customer 

Surplus

Discount 
Fare

Lost Revenue 
from Customer 

Surplus

Captured 
Revenue

Rejected 
Passengers

Overprotection Dilution

 

Figure 1-1: Revenue Losses due to Overprotection and Dilution  

Obviously a single fare at any level does not maximize revenue, as there is untapped 
revenue either in the form of customer surplus or unused seats.  Although it is unfeasible 
to charge each passenger his maximum WTP, airlines have found a way to group 
different sets of passengers together and charge each one of these groups a certain price, 
closer to the maximum WTP of each passenger in that group.  By using business and 
leisure travelers’ sensitivity to restrictions such as advanced purchase, Saturday night 
stay, cancellation fee, and non-refundability, airlines are able to segregate the two groups.  
This practice of offering differing products in terms of service and travel restrictions at 
different fare levels is called differential pricing7.  Figure 1-2 demonstrates differential 

                                                

   

6 Belobaba, P.P., L.R. Weatherford. (1996). Comparing Decision Rules that Incorporate Customer 
Diversion in Perishable Asset Revenue Management Situations. Decision Sciences, Volume 27, Issue 2, pp. 
343. 
7 Belobaba, P. P. (1998). Airline differential pricing for effective yield management. The Handbook of 
Airline Marketing, D. Jenkins (ed.). The Aviation Weekly Group of the McGraw-Hill Companies, New 
York, NY, pp. 349-361.   
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pricing’s ability to increase revenues by offering different fare products at different 
prices.  

Price

Quantity

Aircraft 
Capacity

Demand

Lost Revenue 
from Consumer 

Surplus 

 

Figure 1-2: Captured Revenue Increase with Differential Pricing  

The complication with differential pricing has been and continues to be the allocation of 
seats to the different fare classes.  Since leisure travelers normally purchase tickets far in 
advance, airlines have to decide how many seats to allow these passengers to book and 
how many to withhold for later booking, higher fare business travelers.  Revenue 
management has come a long way since 1978 in its ability to forecast demand based on 
multiple product offerings.  

1.2 RECENT CHANGES IN THE INDUSTRY  

As the airline industry moved further into the deregulated era, the practice of differential 
pricing became more widespread and RM systems became more adept at generating 
higher revenues through these practices.  As airline networks grew, RM systems were 
allocating a common set of seats on a given flight leg between multiple fare classes 
across numerous itineraries.  However, airlines typically operated within one fare class 
structure that became increasingly adept at forcing passengers to pay prices close to their 
WTP.  

This demand segregation ability has been severely hampered by the emergence and rapid 
growth of LCC’s.  LCC’s enjoy a lower cost structure than the legacy carriers, which 
translates into lower fares at a comparable service level and frequency.  These lower fares 
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(and the subsequent increase in market share) have forced NLC’s to match prices in 
markets where an LCC is present in order to maintain their market share (for more fare 
and seat availability matching research, refer to Lua8).    

In addition to lower prices, LCC’s have brought much more simplified (and far less 
differentiated) fare structures into the industry.  Because of the young fleets and 
workforce that LCC’s enjoy, they were able to offer less restricted fares in order to gain a 
foothold within the airline industry.  The simplified fare structures themselves also 
helped to keep costs low as LCC’s did not need expensive RM systems and departments 
in order to break even or even become profitable8.    

The growth of the LCC’s linked with the widespread use of the Internet and the resulting 
transparency in ticket prices forced NLC’s to match not only LCC prices, but also 
simplify their fare structures in these markets to compete with the less restricted fares 
offered by the new carriers.  Delta led the NLC’s with sweeping fare structure changes in 
2005, with the other traditional carriers following suit soon thereafter9.  These changes 
removed major restrictions, compressed the fare ratios (i.e. the ratio between the highest 
and lowest fare), and reduced (if not eliminated) advance purchase requirements10.  

These changes severely reduced the effectiveness of RM systems using traditional 
forecasting methods which operated under the assumption of demand independence.  
Although never entirely correct, before the emergence of LCC’s there was enough 
differentiation in fare products that airlines had a fairly good idea which passengers were 
business and which were leisure.  This made it easier to forecast demand and optimally 
allocate seats.  However, the growth of simplified fare structures forced NLC’s to offer a 
“semi-restricted” fare structure in which the lowest fares were identical except for price, 
while the higher fares were still differentiated according to fare restrictions.       

                                                

   

8 Lua, W.F. (2007).  Matching of Lowest Fare Seat Availability in Airline Revenue Management Systems.  
Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA. 
9 De Lollis, B. (Aug 22, 2006). Fare Changes Give Fliers Weekends Back. USA Today. Retrieved January 
28, 2007, from the World Wide Web: http://www.usatoday.com/travel/flights/2006-08-21-saturday-stays-
usat_x.htm. 
10 Delta Airlines. (Jan 5, 2005). Delta Slashes Everyday Fares up to 50 Percent as Airline Introduces 
SimpliFaresTM Nationwide. Delta Airlines Press Release. Retrieved January 28, 2007, from the World 
Wide Web: http://news.delta.com/article9584.html. 

http://www.usatoday.com/travel/flights/2006-08-21-saturday-stays-
http://news.delta.com/article9584.html
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•BOS-SEA: served by both network carriers and LCC’s

•BOS-BOI: served only by network carriers

 

Figure 1-3: Example of Difficulties of Multiple Fare Structures for RM  

This new fare structure makes the challenging problem of maximizing revenue across a 
network even more difficult.  Figure 1-3 depicts a situation where the creation of this 
“semi-restricted” fare structure makes RM much more complicated for network carriers.  
Consider the flight leg from Boston (BOS) to Salt Lake City (SLC) on a network carrier: 
there will be BOS-SLC passengers on this flight, BOS-SEA passengers, Boston to Boise 
(BOI) passengers, as well as passengers flying from BOS and connecting in SLC to other 
destinations.  The difficulty this new, simplified fare structure causes is twofold: first, the 
RM system must work within the new “semi-restricted” fare structure for the BOS-SEA 
passengers since an LCC is present in that market.  Traditional forecasting will not be as 
effective in this new environment, as the demand independence assumption does not hold 
for the undifferentiated fares.  Second, for the BOS-SLC leg, there are now two different 
fare structures over which the RM system must forecast and ultimately allocate seats.  
The BOS-SEA passengers are subject to a less restricted structure, whereas the BOS-BOI 
passengers book under a fully differentiated fare structure.    

As this example shows, the increased complexity in the networks of legacy carriers has 
severely weakened the effectiveness of the traditional RM systems.  Therefore, new 
techniques must be utilized in order to work within these multiple fare structure 
environments.  

1.3 REVENUE MANAGEMENT DEVELOPMENTS  

Given the need for better RM techniques, new methodologies for forecasting demand in 
the “semi-restricted” environment (Hybrid Forecasting) as well as the individual handling 
of multiple fare classes within the revenue management system (Fare Adjustment) will be 
introduced, with a more detailed examination of these techniques to follow in Chapter 3.   
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1.3.1 Hybrid Forecasting  

In these less restricted fare structures, the RM system has great difficulty in classifying 
business and leisure demand as some of the classes are undifferentiated except for price, 
so a passenger will simply purchase the cheapest available fare.  Hybrid Forecasting (HF) 
uses a different approach for classifying demand – “product-oriented” and “price-
oriented” demand.  As the names suggest, product-oriented passengers are purchasing a 
particular fare class because of its particular attributes (i.e. less restrictive) and not 
because of its price, whereas price-oriented customers are interested only in purchasing 
the lowest possible fare.    

Since these two groups are assumed to have different booking behavior, different forecast 
methods are used for each group (hence the term “Hybrid Forecasting”).  Belobaba and 
Hopperstad11 introduced this concept so that both product- and price-oriented demand in 
a semi-restricted fare structure could be jointly forecasted.  

The forecasting method used for the fully undifferentiated fares in these new fare 
structures is called Q-forecasting, also introduced by Belobaba and Hopperstad12.  Since 
passengers will always buy the lowest available fare, Q-forecasting only forecasts 
demand at the lowest class (Q-class), then utilizes estimates of customers’ WTP to 
forecast demand for higher fare classes (behavior known as “sell-up”).  For the remaining 
differentiated fare classes, traditional forecasting (along with the fare class demand 
independence assumption) is used to forecast demand.    

1.3.2 Fare Adjustment  

Fare Adjustment (FA) was developed by Fiig and Isler13 at Scandinavian Airlines (SAS) 
and SwissAir, respectively, to augment revenues when multiple fare structures (typically 
a less restricted structure and a traditionally restricted structure) exist in a network.  This 
methodology alters the fares downward from the less restricted fare structure used in the 
network seat allocation optimizer, not the published fares that passengers purchase, in 
order to close these fare classes earlier in an attempt to force passengers to sell-up.    

1.4 OBJECTIVES OF THE THESIS  

Obtaining an accurate forecast for future demand is vital to the success of modern RM 
systems and their optimizers in particular.  As the saying goes, “garbage in equals 

                                                

   

11 Belobaba, P., C. Hopperstad. (2004). Algorithms for Revenue Management in Unrestricted Fare Markets. 
Presented at the Meeting of the INFORMS Section on Revenue Management, Massachusetts Institute of 
Technology, Cambridge, MA. 
12 Belobaba and Hopperstad. (2004). “Q investigations – Algorithms for Unrestricted Fare Classes.” PODS 
Consortium Meeting, Amsterdam. 
13 Fiig, T., Isler, K. (2004). “SAS O&D low cost project.” PODS Consortium Meeting, Minneapolis, MN.   
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garbage out”.  No matter how sophisticated the RM system is, if the demand forecasts fed 
into the seat allocation optimizer are incorrect, the seat allocation booking limits will be 
erroneous as well, leading to a large deviation from the maximum revenues that could 
have been obtained.  With multiple fare structures becoming commonplace among 
network carriers, the need for accurate demand forecasts is vital to maximizing revenues.  

In this new environment, airlines need a way of managing each fare structure in their 
network separately.  Fare Adjustment allows them this opportunity, as it forces the fares 
in the RM system from the less restricted fare structures lower, so the joint closing of 
fares from both fare structures can be more optimally managed.  

The objective of this thesis is to evaluate the effectiveness of these two techniques in 
multiple fare structure environments.  Hybrid Forecasting will first be evaluated by itself 
in these environments, and then the effect of the addition of Fare Adjustment with Hybrid 
Forecasting will be shown.    

Previous research by Soo14 has investigated the joint effectiveness of these two 
technologies, but this research was not focused on multiple fare structure environments.  
These techniques will be assessed in two different networks, each with 4 competing 
airlines: Network S1 will have a traditional fare structure and a less restricted fare 
structure, while Network S4 will have the same traditional fare structure but the “less-
restricted” structure will be completely undifferentiated in order to fully evaluate the 
revenue implications of Hybrid Forecasting and Fare Adjustment. Soo’s14 analysis also 
concentrated on the use of arbitrary passenger sell-up rates, whereas this thesis will 
utilize techniques for estimating sell-up by using historical booking data.   

1.5 ORGANIZATION OF THE THESIS  

This thesis consists of four main parts: a literature review, description of the theory 
behind Hybrid Forecasting and Fare Adjustment, overview of the Passenger Origin-
Destination Simulator (PODS) and the simulation environment, and the analysis from the 
PODS simulations.  

Chapter 2 presents a summary of previous research done in Revenue Management, 
particularly in the areas of forecasting, sell-up estimation, specific RM techniques, and 
less restricted fare structures due to LCC growth.  

Chapter 3 provides a detailed theoretical description of both Hybrid Forecasting and Fare 
Adjustment, and describes how these techniques can be beneficial in the new fare 
environments facing legacy carriers.  

                                                

   

14 Soo, Y.S.V. (2007). Fare Adjustment Strategies for Airline Revenue Management and Reservation 
Systems. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA. 
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The PODS simulation environment is presented in Chapter 4.  Emphasis will be placed 
on the different network seat allocation optimizers and sell-up estimation methods used in 
the simulations.  The two different network environments in which the simulations will 
be run will also be introduced.  

Both Chapters 5 and 6 will contain analysis of the results from the PODS simulations.  
Chapter 5 will concentrate on evaluating the results of the current method of Fare 
Adjustment.  Chapter 6 will begin with an introduction of a new Fare Adjustment 
methodology, and then continue with analysis from PODS using this new formulation.    

The thesis concludes with a summary of experiments conducted and revenue impacts of 
Hybrid Forecasting and Fare Adjustment.  Also presented are several opportunities for 
future research in this area.      
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CHAPTER 2 
LITERATURE REVIEW  

Revenue management literature dates back as far as the 1960’s, with early research 
concentrating on the overbooking problem.  However, with the reduction of regulations 
on the airline industry and the shrinking profit margins with which carriers have operated, 
much more emphasis has been placed on methods for extracting the highest possible 
revenues in a network, rather than maximizing the number of passengers carried.  This 
has caused a large growth of published material from academics and practitioners alike in 
the past 25 years.  

This chapter will consist of two sections: first, a review of revenue management 
techniques that have been developed for traditional fare structures.  The second section 
will focus on the effects of Low Cost Carriers on traditional network airlines, specifically 
addressing the less-restricted fare structures Network Legacy Carriers are forced to offer 
in markets in which an LCC is present.      

2.1 TRADITIONAL REVENUE MANAGEMENT 
MODELS  

Revenue management’s goal is to maximize revenues by limiting available seats to low-
fare, early booking passengers in favor of high-fare, late booking passengers.  Although 
the essential problem of calculating the correct number of seats to withhold on a given 
flight leg at a particular point in the booking process has been solved for certain 
environments, the size and complexity of current airline networks create barriers for 
implementation (not to mention the lack of competitive effects consideration in the 
algorithms).  McGill and van Ryzin4 provide a comprehensive survey of revenue 
management literature, while Boyd and Bilegan15 give a more technical review of RM 
research.  Clarke and Smith16 review the impact of Operations Research (OR) not only on 
revenue management, but also on issues such as fleet assignment and infrastructure 
operations.  

Most revenue management techniques were developed under a critical assumption that 
demand for a given fare class is independent of the demand for other fare classes.  In the 
early days of revenue management, this assumption was not as detrimental to airline 
revenues because airlines were able to sufficiently segregate demand using fare class 

                                                

   

15 Boyd, E. A., I. C. Bilegan. (2003). “Revenue Management and E-Commerce.” Management Science, 
Volume 49, Issue 10, pp.1363-1386. 
16 Clarke, M., B. Smith. (2004). Impact of Operations Research on the Evolution of the Airline Industry. 
Journal of Aircraft. Volume 41, Issue 1, pp. 62-72. 
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restrictions and thus target specific groups of passengers with similar sensitivities to time 
and price.  

Barnhart et al.17 describes the evolution of revenue management systems since the early 
1980’s.  The earliest systems simply kept a record of bookings in the system without an 
effective method of using that information.  These databases were upgraded so airlines 
could accurately track the bookings for a given flight and compare them against an 
expected booking curve based on previous departures of that specific flight.  Currently, 
“third generation” RM systems contain all the previous capabilities, as well as being able 
to forecast demand and optimize by booking class for a future flight departure.    

REVENUE 
DATA

HISTORICAL 
BOOKING DATA

ACTUAL 
BOOKINGS

NO-SHOW 
DATA

FORECASTING 
MODEL

OPTIMIZATION 
MODEL

OVERBOOKING 
MODEL

RECOMMENDED 
BOOKING LIMITS

Reproduced from Barnhart et al. 

Figure 2-1: Third Generation Airline Revenue Management System  

The three main components of this “third generation” RM system, as seen in Figure 2-1, 
are the overbooking, forecasting, and optimization models.  Actual bookings for a flight 
leg are combined with historical booking data for the same flight leg on the same day of 
the week (may also be segregated by seasonality) to generate a forecast of demand for 
each booking class on departure day.  Estimates of the revenue generated from each 
booking class are then combined with these demand forecasts and inputted into an 
optimization model which calculates the recommended booking limits for the flight.  An 
overbooking model that uses the total demand forecasts and historical no-show rates 
provides the optimal overbooking level for the flight departure at the same time.  Overall 
recommended booking limits are calculated by using the recommended booking limits 
from the optimization model and the optimal overbooking levels.  

                                                

   

17 Barnhart, C., P. P. Belobaba, A. R. Odoni. (2003). Applications of Operations Research in the Air 
Transport Industry. Transportation Science, Volume 37, Issue 4, pp. 368-391. 
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The following sections in this chapter will present research covering overbooking, 
forecasting, and seat allocation optimization.   

2.1.1 Overbooking  

The earliest research into the enhancement of revenue was through the use of 
overbooking flights.  Airlines were concerned with flights departing with empty seats due 
to passenger no-shows and the subsequent revenue loss.  Therefore, overbooking models 
were created in order to determine the number of bookings to accept for a flight, taking 
into account not only the potential for revenue loss from empty seats, but also the costs of 
denied boardings (passengers who have a confirmed booking on a flight but are unable to 
board the flight as more booked passengers arrive for the flight than the aircraft has 
capacity).  Early deterministic overbooking models were developed by Thompson18 and 
Taylor19.  Later work by Rothstein20,21 and Alstrup et al.22 examined overbooking using 
stochastic models.  In the simulation runs to be presented, no overbooking model was 
used.  

2.1.2 Forecasting  

As Figure 2-1 demonstrates, in order for a RM system to generate effective booking 
limits for a flight, accurate forecasts of total demand must be found by using both 
historical bookings on the same flight and current bookings on a flight that will depart in 
the future.  Forecasting demand is difficult not only due to the different booking nature of 
passengers (i.e. low WTP customers book early, high WTP customers book late), but also 
because of the dynamic nature of forecasting.  Forecasters must take into account how 
many bookings this flight has seen in the past at this time before departure and compare 
that with the actual bookings on the future flight at the same point in time.  Large 
deviations from the historical booking pattern for a given flight can make it difficult on a 
forecaster to generate acceptable (not to mention accurate) forecasts for bookings up until 
flight departure.    

                                                

   

18 Thompson, H.R. (1961). Statistical Problems in Airline Reservations Control. Operations Research 
Quarterly. Volume 12, pp. 167–185. 
19 Taylor, C. J. (1962). The Determination of Passenger Booking Levels. 2nd AGIFORS Annual Symposium 
Proceedings, Fregene, Italy. 
20 Rothstein, M. (1968). Stochastic Models for Airline Booking Policies. Ph.D. Thesis, Graduate School of 
Engineering and Science, New York University, New York, NY. 
21 Rothstein, M. (1971). An airline overbooking model. Transportation Science, Volume 5, pp. 180-192.  
22 Alstrup, J., S. Boaz, O.B.G. Madsen, R. Vidal, V. Victor. (1986). Booking Policy for Flights with Two 
Types of Passengers. European Journal of Operations Research, Volume 27, pp. 274 -288. 
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2.1.2.1  Pick-up Forecasting  

Pick-up forecasting is a relatively intuitive way of forecasting demand at a certain point 
in the booking process.  Instead of simply averaging the total bookings from a set of 
similar flights that have departed, pick-up forecasting calculates, from the historical 
database, the expected incremental bookings occurring in each time interval from 
departure.  This pick-up forecast is then added to the total number of current bookings in 
order to forecast the total demand at the end of the time period.  

There are two versions of this technique: the classical and the advanced pick-up model.  
The classical pick-up model only uses information from flights that have departed, 
whereas the advanced pick-up model developed by L’Heureux23 also uses data from 
flights that have not yet departed.  In this thesis, only the classical pick-up forecasting 
method was used.  More detailed analysis of the classical pick-up forecasting model can 
be found in Zickus24, Skwarek25, Usman26, or Gorin27.  

2.1.2.2  Other Forecasting Methods  

Although the pick-up forecasting model is the only forecasting method used in this thesis, 
there are other RM forecasting methods that are also being used by airlines: moving 
average, exponential smoothing, regression, and multiplicative pick-up28.  Zeni29 

discusses the moving average method, the multiplicative pick-up model, and exponential 
smoothing.  Wickham30 compared pick-up models to simple time-series and linear 
regression methods and found that in most cases the pick-up forecasting method led to 
greater revenues. Zickus24, Skwarek25, Usman26, and Gorin27 all cover different time-
series models for forecasting and unconstraining historical demand.     

                                                

   

23 L’Heureux, E. (1986). A New Twist in Forecasting Short-term Passenger Pickup. 26th AGIFORS Annual 
Symposium Proceedings, Bowness-on-Windemere, England, pp. 248–261. 
24 Zickus, J. S. (1998). Forecasting for Airline Network Revenue Management: Revenue and Competitive 
Impacts. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA. 
25 Skwarek, D. K. (1996). Competitive Impacts of Yield Management Systems Components: Forecasting 
and Sell-up Models. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA. 
26 Usman, A. S. (2003). Demand forecasting accuracy in airline revenue management: analysis of practical 
issues with forecast error reduction. Master’s thesis, Massachusetts Institute of Technology, Cambridge, 
MA.   
27 Gorin, T. O. (2000). Airline revenue management: sell-up and forecasting algorithms. Master’s thesis, 
Massachusetts Institute of Technology, Cambridge, MA. 
28 Weatherford, L. (1999). Forecast Aggregation and Disaggregation. IATA Revenue Management 
Conference Proceedings. 
29 Zeni, R. H. (2001). Improved Forecast Accuracy in Revenue Management by Unconstraining Demand 
Estimates from Censored Data. Ph.D. Thesis. Rutgers, the State University of New Jersey, Newark, NJ. 
30 Wickham, R. R. (1995). Evaluation of Forecasting Techniques for Short-Term Demand of Air 
Transportation. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA. 
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2.1.3 Seat Allocation Optimizers  

The ultimate goal of RM, deciding how many seats to allocate to different fare classes in 
order to maximize revenue, is calculated by the seat allocation optimizer using the 
demand forecasts and revenue data.  There are two different categories of algorithms used 
to set the booking limits: leg base control and Origin-Destination (OD) control.  

2.1.3.1 Leg-Based Control  

After receiving demand forecasts for individual fare classes, leg-based optimizers 
determine the availability of fare classes on each leg.  One of the seminal works of RM, 
written by Littlewood31, solved the fare class mix allocation problem for two classes by 
introducing an idea known as “nesting”.  Instead of allocating a certain number of seats to 
each fare class independently (and allowing a lower fare class to be available when a 
higher fare class is not), nesting protects higher fare classes from lower fare classes by 
limiting the number of seats sold in lower fare classes according to the forecasted demand 
and expected seat revenue for each fare class.    

Belobaba32, in his Ph.D. thesis, extended the nested seat allocation problem to multiple 
fare classes using the Expected Marginal Seat Revenue (EMSR) heuristic.  EMSR is 
simply the average fare of the seat being considered multiplied by the probability that 
demand will materialize for that marginal seat.  This seat should only be held for a 
particular fare class when its EMSR is greater than the average fare of the next lower 
class.  Therefore, the booking limit for a fare class is found when the EMSR for that fare 
class equals the average fare of the next lower class.  Belobaba33 further updated this 
methodology in order to make it more robust, and it has now become known as the 
EMSRb method.  More in-depth information on the EMSRb algorithm can be found in 
Williamson34 and Lee35.  

Curry36, Wollmer37, and Brumelle and McGill38 have formulated optimal nested seat 
allocation algorithms for multiple fare classes.  However, the EMSRb method continues 

                                                

   

31 Littlewood, K. (1972). Forecasting and Control of Passenger Bookings. 12thAGIFORS Annual 
Symposium Proceedings, Nathanya, Israel, pp. 95–117. 
32 Belobaba, P. P. (1987). Air Travel Demand and Airline Seat Inventory Management. Ph.D. Thesis, 
Massachusetts Institute of Technology, Cambridge, MA. 
33 Belobaba, P. P. (1992). The Revenue Enhancement Potential of Airline Revenue Management Systems. 
ASTAIR Proc. Adv. Software Tech. Air Transport, London, U.K. 
34 Williamson, E. L. (1992). Airline Network Seat Inventory Control: Methodologies and Revenue Impacts. 
Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA. 
35 Lee, A. Y. (1998). Investigation of Competitive Impacts of Origin-Destination Control using PODS. 
Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA. 
36 Curry, R. E. (1990). Optimal Airline Seat Allocation with Fare Classes Nested by Origin and 
Destinations. Transportation Science. Volume 24, Issue 3, pp. 193–204. 
37 Wollmer, R. D. (1992). An Airline Seat Management Model for a Single Leg Route when Lower Fare 
Classes Book First. Operations Research. Volume 40, Issue 1, pp. 26–37. 
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to be much more widely used by airlines throughout the world because of its short 
computation time and its results that continue to be shown close to optimal.  

2.1.3.2 Origin-Destination Control  

Although leg-based RM systems increase revenues, there is still a disconnect between the 
way these systems forecast and optimize, by leg, and the way passengers book air travel, 
by path (which may consist of more than one leg).  Leg-based systems are able to 
maximize yield but not maximize revenue in the network.  In order for a passenger to 
book on a connecting itinerary, the same fare class must be available on all legs of the 
itinerary.  Therefore, high demand legs which shut down lower fare classes may cause 
connecting passengers with higher total revenue contributions to be rejected in favor of 
local passengers.    

In an effort to better align RM methods to the booking process as well as maximize total 
network revenues, Origin-Destination revenue management systems were developed.  
These systems allocate seat inventory based on paths, not merely on individual legs, 
making them valuable to airlines that operate vast hub-and-spoke networks.    

Smith and Penn39 at American Airlines developed one of the first methods for OD control 
called “virtual buckets”.  Instead of fare classes, an Origin-Destination Fare (OD Fare) is 
placed into a virtual bucket (which is internal to the airline’s RM system) that allows both 
local and connecting itineraries to be compared.  Booking limits are then set on these 
virtual buckets rather than on actual fare classes.  However, this is a “greedy” approach 
that favors connecting passengers even in situations where two local passengers would 
contribute more revenue than a connecting passenger.  

In an effort to better account for the bias toward connecting passengers, Displacement 
Adjusted Virtual Nesting39 (DAVN) was created.  This method corrects the value of the 
OD Fare for the displacement costs of taking a seat from a local passenger.  A 
deterministic linear program (LP) is run to find leg shadow prices, which are estimates of 
the leg displacement costs40.  DAVN then controls inventories based on the Network 
Revenue Value or Pseudo Fare, which is the original OD Fare minus the leg displacement 
costs over a particular path.  Williamson41, Vinod42, and Wei43 offer more information on 
both OD control and specifically the DAVN approach.    

                                                                                                                                                

   

38 Brumelle, S. L. and McGill, J. I. (1988). Airline Seat Allocation with Multiple Nested Fare Classes. 
Paper presented at the Fall ORSA/TIMS Conference, Denver, CO. Also presented at the University of 
British Columbia, 1987. 
39 Smith, B. C., C. W., Penn. (1988). Analysis of Alternative Origin-Destination Control Strategies, 
AGIFORS Symposium Proceedings, 28, 123-144. 
40Belobaba, P. (2008). “Overview of PODS Simulation Models and RM Systems.” PODS Consortium 
Meeting, Los Angeles, CA.    
41 Williamson, E. L. (1988). Comparison of optimization techniques for origin-destination seat inventory 
control. Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA.   
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Another approach to OD control that is much simpler to implement is “Bid-Price 
Control”.  Developed by Simpson44 and Williamson45, and also discussed by Smith and 
Penn39, this method only makes the airline store a bid-price value (approximated 
displacement cost) for each leg in the network.  An OD Fare is then compared to the sum 
of the bid prices on the legs that the path crosses.  If the OD Fare is greater than this 
itinerary bid-price, the booking is accepted, otherwise it is rejected.    

A number of algorithms for calculating leg bid prices have been developed, including 
Network Bid-Price (NetBP), Heuristic Bid-Price (HBP) by Belobaba46, and Probabilistic 
Bid-Price (ProBP) by Bratu47.  

2.2 RISE OF THE LOW COST CARRIER  

Although Southwest began operations in 197148, the deregulation of the US airline 
industry destroyed many of the barriers that had previously discouraged new airlines, 
especially with a LCC business model, from entering into the lucrative US domestic 
market.  Deregulation in other world markets has also caused an influx of LCC’s, some 
of whom have become quite large and profitable airlines.  Tretheway49 writes in his 2004 
article that in the US, Canada, and European Union, an LCC carrier has the highest 
market capitalization of any airline (Southwest, WestJet, and Ryanair, respectively).    

LCC’s have been able to gain market share quickly through their low cost structures.  
These airlines are relatively new, which means operating newer aircraft and younger 
workforces.  The labor cost advantage has been one of the main reasons LCC’s have been 
able to offer low fares for extended periods of time (however, NLC’s have done a very 
good job of lower labor costs in recent years, due in no small part to bankruptcy 
negotiations).    
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Massachusetts Institute of Technology, Cambridge, MA. 
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45 Williamson, E. L. (1992). Airline Network Seat Inventory Control: Methodologies and Revenue 
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Massachusetts Institute of Technology, Cambridge, MA.   
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49 Tretheway, M. W. (2004). Distortions of airline revenues: why the network airline business model is 
broken. Journal of Air Transport Management. Volume 10, Issue 1, pp. 3-14.   
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LCC’s have typically focused on the price-oriented passenger, reducing the need for high 
service amenities such as first-class seats and business lounges in airports50.  NLC’s have 
realized the advantages of limiting the number of customer types they attempt to serve in 
order to better provide services to all passengers.  Although some legacy carriers have 
undoubtedly turned their focus toward the price-oriented passenger, Elliott51 shows 
anecdotal evidence that United Airlines has instead decided to focus on the product-
oriented customer.    

Another problem NLC’s are encountering is the growing price sensitivity of product-
oriented passengers52,53.  Some companies are no longer willing to pay the last minute, 
full-fare ticket on NLC’s anymore.  Not only are substitutes such as video 
teleconferencing gaining ground, but LCC’s have noticed this change in passenger 
behavior and have acted upon it.  Southwest and JetBlue have recently began offering 
amenities and fare products that are intended to cater to the more price-sensitive business 
traveler54.      

Gorin’s55 thesis focuses on the impact of the entrance of LCC’s into the US airline 
industry, and both Weber and Thiel56 and Dunleavy and Westerman57 provide good 
comparisons between the business models of LCC’s and NLC’s.  

2.2.1 Less-Restricted Fare Structures  

One of the main characteristics of LCC’s is their simpler, less-restricted fare structures.  
In contrast to the legacy carriers who offer many different fare products with many 
different restrictions and price levels, LCC’s tend to only have a few fare products which 
are priced low and have fewer restrictions.  This fare structure does not allow 
sophisticated RM systems to allocate seats based on segregated demand, but LCC’s use 
this to their advantage, as these simplified structures do not need large RM and OR 
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Revenue and Pricing Management, Volume 5, Issue 1, pp. 83-89. 
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departments and allow the airline to keep costs low.  According to Tretheway49, “the 
introduction of low one way fares…has undermined the price discrimination ability of the 
FSNC’s [full service network carrier], and is the most important pricing development in 
the industry in the past 25 years.”  

With these new, low-priced fare products being offered, legacy carriers were forced to 
match the LCC’s on markets in which they were directly competing with an LCC or else 
risk losing a significant portion of market share.  However, the NLC’s revenue 
management systems were still operating under the assumptions of segmented and 
independent demand.  When the legacy carriers switched to these less-restricted fare 
structures, they lost the ability to effectively segment and forecast demand.    

2.2.1.1 Spiral Down Effect  

With these segmentation restrictions removed, NLC’s were no longer able to force 
product-oriented passengers to buy in higher fare classes.  This allowed product-oriented 
passengers to “buy-down” – purchasing a ticket in a fare class lower than what they 
would have previously purchased because they can now pay less for the same product.  
This diversion of high-fare demand to lower fare classes can lead to a cycle known as 
“spiral down”.  Figure 2-2 illustrates this revenue-lowering cycle.  

Less protection of 
higher fare classes

More available seats 
at lower fare classes

High-fare demand 
“buy-down” to lower 

fare classes

Fewer bookings in 
higher fare classes

Lower forecast of 
high-fare demand 

Less-restricted fare 
structures

 

Figure 2-2: Spiral Down Effect8  

The less-restricted fare structures reduce the ability to segment demand, and therefore 
high-fare demand buys-down into the lower fare classes.  The historical booking database 
receives fewer bookings in the higher fare classes which causes the revenue management 
system to forecast a lower amount of high-fare demand.  This forecast is then fed into the 
seat allocation optimizer, which proceeds to protect fewer seats for higher fare classes 
since the demand forecast is lower.  In turn, this makes more seats available for lower 
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booking classes, which encourages even more high-class demand buy-down.  Obviously, 
this cycle will repeat with more and more seats being opened for lower fare classes and 
revenues being constantly diluted.  

A mathematical model to describe the spiral down effect is developed by Cooper et al.58, 
while the effects of this cycle have been analyzed both by practitioners at United 
Airlines59 and by Cusano60 with PODS.  

2.2.2 Fare and Seat-Availability Matching  

Although many NLC’s have invested millions of dollars into sophisticated RM systems, 
many times they make decisions based on the competition.  Although the RM system 
may have a particular fare class opened or closed, an analyst may manually override the 
system if a competitor’s actions jeopardize the carrier’s market share.  Nason61 points out 
that the pricing transparency brought on by the online travel agencies has had a large 
effect on consumer behavior and will have a large effect on the future of revenue 
management.    

Both Nason61 and Cary53 argue that in the future, revenue gains may be possible by 
incorporating real-time competitor information into an airline’s revenue management 
system.  One airline, bmi, has actually began incorporating this technology into its RM 
system by scanning other airline fares, comparing the fares with bmi’s by flight/date, and 
integrating this information with bmi’s RM system62.  However, this is done at an “ad 
hoc individual level”, and the information is not currently integrated into the seat 
allocation optimizer for bmi, but rather used by an analyst to make more well-informed 
decisions.  

Although fare matching has allowed NLC’s to compete based on price, they are still 
limited by their cost structures63.  An NLC may not be able to operate for a prolonged 
period while matching an LCC if its cost structure is too high.  However, as noted above, 
the costs for NLC’s and LCC’s have been converging in recent years as LCC work forces 
and equipment age and NLC’s have gained concessions at the bargaining table. 
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In Lua’s8 thesis, he investigates the impacts of an airline matching the fare seat 
availability of another airline in a competitive environment using PODS.  He concluded 
that in most simulations, the airline that instituted fare seat availability matching lost 
revenue while the airline that was matched improved its revenues.   

There has been a large amount of research in the past 25 years on all aspects of revenue 
management.  However, the growth of the LCC’s has invalidated some assumptions and 
has rendered some advances moot.  The next chapter will describe in detail two different 
methods for maximizing revenue in less differentiated multiple fare structure 
environments.  

2.3 CHAPTER SUMMARY  

This chapter began with a review of the literature on the three traditional revenue 
management models, with the discussion focused largely on forecasting and seat 
allocation optimization.  Next, the literature on the emergence of LCC’s was explored.  
The impact of LCC’s on legacy carriers has been immense, as the removal of fare class 
restrictions and subsequent demand segmentation degeneration has led to lower revenues 
for the NLC’s.  The traditional revenue management systems employed by the NLC’s are 
ill-suited for use on less restricted fare structures, as section 2.2.1.1 explained.  Finally, a 
short review of fare and seat-availability matching was conducted as the Internet has had 
a large effect on the actions of not only consumers but also RM analysts as more 
information is readily available. 
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CHAPTER 3 
DEVELOPMENT OF NEW RM METHODS 
FOR SIMPLIFIED FARE STRUCTURES  

The introduction of less-restricted fare structures by LCC’s has had a large impact on the 
revenue maximizing ability of NLC’s.  In order to retain market share, NLC’s have been 
forced to match the fare structures of LCC’s in markets where an LCC is present.  This 
presents a challenge for legacy carriers as their traditional revenue management 
techniques will result in spiral down in these new fare structures.  Additionally, a legacy 
carrier uses not one but several different fare structures across its network.  This 
introduces added complexity to the RM problem as a single flight leg can carry 
passengers from both traditional and less restricted fare structures.  Hybrid Forecasting 
(HF) and Fare Adjustment (FA) are two techniques used to help the NLC’s recapture 
some of the lost revenue due to the simplification of fare structures and removal of 
segmentation restrictions.  

3.1 HYBRID FORECASTING  

In order to match LCC’s in a given market, legacy carriers have had to create semi-
restricted fare structures.  These structures are characterized by lower fare classes that 
have the same set of restrictions and are distinguished only by price, and higher fare 
classes which still segregate demand effectively through different combinations of 
restrictions.  HF utilizes a new classification for passengers in the forecasting process: 
yieldable (product-oriented) and priceable (price-oriented)64.    

There will be two subsequent sections: first, a new forecasting technique solely for price-
oriented passengers will be covered, and second, the incorporation of this new forecasting 
method with traditional pick-up forecasting for product-oriented passengers will be 
discussed, resulting in Hybrid Forecasting.  

3.1.1 Q-Forecasting  

Since the traditional assumption of demand independence is no longer valid for 
undifferentiated fares, a new forecasting approach was developed by Belobaba and 
Hopperstad65 called Q-forecasting.  This method assumes fully undifferentiated fares 
such that passengers buy the lowest available fare. 
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Q-forecasting’s goal is to force sell-up by estimating a passenger’s WTP and closing 
down lower fare classes so that the passenger must purchase a fare closer to their WTP.  
Instead of forecasting demand for each class separately (as is done with independent fare 
classes), Q-forecasting only forecasts demand at the lowest fare class (denoted class Q) 
and then uses estimates of the customers’ WTP to force sell-up by closing down lower 
fare classes.  An overview of the Q-booking process is presented in Figure 3-1. 

Consider historical bookings when sell-up 
occurred (Q class was closed)

Convert into Q-equivalent bookings by 
dividing by the inverse of the sell-up 

probability

Sum up the Q-equivalent bookings from 
each class

Scale the total Q-bookings back into fare 
classes to generate demand for each fare 

class

Employ traditional optimizer to calculate 
the booking limits

 

Figure 3-1: Basic Overview of Q-forecasting66  

First, historical bookings made when sell-up occurred (Q class was closed) are converted 
into Q-equivalent bookings by scaling them by the inverse of the sell-up probability:   

f f Q

f 

to from up-sell ofy Probabilit 

classin  bookings Historical  
bookings equivalent-Q Total  

An example of the calculation of Q-equivalent bookings is shown in Table 3-1.  

Class f Historical 
bookings in f 

Probability of sell-up 
from Q  to f 

Q-equivalent bookings 
for class f 

Y 5 15% 5/.15 = 33 
B 15 40% 15/.40 = 38 
M 25 80% 25/.80 = 31 
Q 45 100% 45 

                                                                                    Total Q-equivalent bookings = 147 
Table 3-1: Example Calculation of Q-equivalent Bookings 
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Using the sell-up probability from Q to some higher class to scale the bookings is, in 
effect, calculating the number of bookings that would have been seen had class Q been 
open.    

Once the Q-equivalent bookings have been calculated for each class, they are all summed 
together.  Finally, this total Q-booking number is then repartitioned back into individual 
fare classes by multiplying the total Q-bookings by the probability that a passenger will 
sell-up to class f  but not 1f  :  

1)]  to from up-sell ofobability (Pr) to                               

from up-sell ofity [(Probabil  bookings equivalent-Q Total  classfor  demand Forecasted

fQf Q

f 

Using the values from Table 3-1 (total Q-equivalent bookings = 147), Table 3-2 shows 
the repartitioning of demand back to each individual fare class.  

Class f Probability of sell-up from 
Q  to f 

Repartitioned demand for 
class f 

Y 15% 147 * (.15-.00) = 22 
B 40% 147 * (.40 - .15) = 38 
M 80% 147 * (.80 - .40) = 59 
Q 100% 147 * (1.00 - .80) = 29 

Table 3-2: Example Calculation of Repartitioning Demand to each Fare 
Class  

Cléaz-Savoyen66 showed in his thesis that the use of Q-forecasting on unrestricted fare 
structures is effective in reducing the revenue loss due to the reduction of fare class 
restrictions.  

Although Q-forecasting overcomes the independence assumption, it requires willingness-
to-pay inputs (sell-up).  This has become a significant stumbling block as effective 
methods for estimating sell-up have not performed as well as arbitrarily inputted sell-up 
values in the Passenger Origin-Destination Simulator.  In the next chapter, two sell-up 
estimation methods will be presented that will be used in the simulations.  

3.1.2 Combining Forecasting Techniques  

Q-forecasting deals only with the undifferentiated fares in the semi-restricted fare 
structure.  It is not valid to use Q-forecasting for the entire semi-restricted fare structure 
as bookings will be made in a higher fare class when it is not the lowest open class 
(which would violate the assumption of Q-forecasting that all classes are 
undifferentiated).  However, using traditional pick-up forecasting for the entire fare 
structure is also not correct with the lower fare classes violating the demand 
independence assumption.  
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Initially suggested by Boyd and Kallesen64, Belobaba and Hopperstad65 developed 
Hybrid Forecasting in order to forecast both price- and product-oriented demand 
simultaneously for a semi-restricted fare structure.  The lower fare classes will have 
demand forecasts created solely by price-oriented passengers, while higher fare classes 
will have their demand forecasts created by a combination of price- and product-oriented 
passengers.  Reyes finds in his thesis that the use of hybrid forecasting on semi-restricted 
fare structures gives approximately 3% revenue gains over using standard pick-up 
forecasting67.    

3.2 FARE ADJUSTMENT  

Fare Adjustment (FA) was developed by Fiig and Isler68 as a way to de-couple fare 
structures that could exist on a single leg.  FA allows the airline to independently control 
the more-restricted fare structure and the less-restricted fare structure on the leg.  Section 
1-2 describes a situation where FA could be used to manage the fare structures on the 
BOS-SLC leg.  The following sections will explain the need for FA and demonstrate the 
method for calculating the adjusted fare.  

3.2.1 Overview of the Need for Fare Adjustment  

Fare Adjustment was created for use with DAVN, where a pseudo fare (OD Fare – 
displacement costs, section 2.1.3.2) is mapped to a virtual class within the RM system, 
and the booking limits are set on these virtual classes.  It is possible for a legacy airline to 
have an OD fare class from a more-restricted fare structure and a separate OD fare class 
from a less-restricted fare structure to be mapped to the same virtual bucket.  Demand for 
the more-restricted fare structure will be independent as it is effectively segregated, 
whereas demand for the less-restricted structures will be dependent and revenues are 
maximized by estimating sell-up for both the forecaster and the optimizer.  Therefore, it 
may be optimal to close down a virtual class for one fare structure, but not optimal for the 
other fare structure, and vice versa.  An example of this conflict is shown in Figure 3-2.  
In this example, if virtual class 4 is shut down, both of the pseudo fares mapped to that 
bucket would be shut down, which may not be optimal overall for the network.    
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Figure 3-2: Example of Multiple Fare Structure Conflict on a Leg66  

It is beneficial to quickly review DAVN in order to more fully understand the 
implementation of Fare Adjustment.  DAVN is an Origin-Destination optimizer because 
it uses path/class forecasting instead of simply leg-based forecasting.  Origin-Destination 
Fares (OD Fares) are inputted into a network LP which calculates the displacement cost 
for a given leg.  This displacement cost is a penalty applied to connecting itineraries for 
the possible displacement of a local passenger.  Although initially working with OD 
Fares, the actual value that is bucketed and optimized is the pseudo fare.  For a given 
itinerary, the pseudo fare for a given leg on that itinerary is the OD Fare minus the 
displacement cost of all other legs on that itinerary.  Therefore, the pseudo fare for a local 
passenger is simply the passenger’s OD Fare, while a connecting passenger’s pseudo fare 
is the difference between the actual fare on the leg the passenger is booking and the 
displacement costs of the other legs in the itinerary.  Although DAVN uses path/class 
demand forecasts, all the fare classes sharing a particular leg are bucketed in terms of 
pseudo fares and optimized, meaning the seat allocation is calculated on a leg level.    

The Fare Adjustment method, instead of feeding the network LP with OD Fares, gives 
the LP the Marginal Revenue (MR, calculation shown later in this chapter), or adjusted 
fare, of an itinerary.  This means the OD Fare has another value, the Price-Elasticity Cost 
(PE Cost), subtracted from it to account for the risk of buy-down, therefore “Marginal 
Revenue = OD Fare – PE Cost”.   The LP then calculates the displacement cost of each 
leg based on the inputted Marginal Revenue values for each OD fare class on the 
network.  Whereas the value bucketed without FA was the pseudo fare (OD Fare – 
Displacement costs), the bucketed value with FA is “OD Fare – Displacement costs – PE 
Cost”.  The inclusion of MR into the DAVN process is shown in Figure 3-3.    
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Figure 3-3: Addition of Marginal Revenue into the DAVN Process66  

The subtraction of this PE Cost causes the undifferentiated fares to be mapped to a lower 
bucket and allows the two different fare structures to be managed more separately, as 
shown in Figure 3-4.  Note that differentiated fare classes are not affected by the PE Cost 
as there is no risk of buy-down in effectively segmented demand.      
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Figure 3-4: Example of Decoupling Multiple Fare Structures66  

The following sections will show how to calculate the adjusted fare through the Marginal 
Revenue Transformation69.    
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3.2.2 Introduction of the Optimization Problem  

In order to develop the Fare Adjustment theory, a simple, general problem will be 
introduced.  This problem will be the basis for an example that will demonstrate the 
validity of the Marginal Revenue Transformation.  This general problem is a single flight 
leg with a set capacity (CAP).  The time dimension will not be considered as this will be 
a static optimization.  Additionally, the problem will be made more simplistic as demand 
is assumed to be deterministic.  

The airline can have any number of fare classes iC  with n i ..1  with 1 being the highest 
class.  The fares associated with each class are in decreasing order with fare class 1 
having the highest fare.  The objective of the airline is to choose a strategy iS (which set 

of classes to open) that maximizes revenue.  For the general problem and the following 
example, all fare classes are nested, such that strategy 4S has fare classes 1-4 open.    

For the general problem, demand for an individual fare class is dependent on the 
availability of the other fare classes, or put another way, on the optimization strategy 
chosen.  Therefore, demand for a given fare class is denoted )( ki Sd .  Using the demand 

categorization method suggested by Boyd and Kallesen, price-oriented demand for a fare 
class is given as price

id  and product-oriented demand as prod
id .  Finally, total demand for a 

chosen strategy is calculated as the sum of the demands for the open fare classes and 
denoted iQ , while total revenue is simply the demand for a fare class multiplied by its 

fare, summed over all the available fare classes and denoted iTR .     

Each of the notations described is given in Table 3-3, which shows the demand by class, 
total demand and total revenue for each optimization strategy.  

   
          

Table 3-3: Notation for Demands and Total Revenue by Strategy69  

For the remaining sections in this chapter, the following example will be used to illustrate 
the usefulness of the Marginal Revenue Transformation methodology.  The aircraft 
capacity is CAP=100.  The flight leg under consideration will have a fare structure that 
consists of four fare classes with the corresponding prices and demands listed in Table 3-
4.    
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Fare Class Demand ( id ) Fare Price ( if ) 

1 20 1000 
2 18 650 
3 35 400 
4 58 275 

Table 3-4: Demands and Fare Prices for Four-Class Example  

3.2.2.1 Fully Restricted Fare Structure  

As previously discussed, a fully restricted fare structure effectively segments demand by 
fare class.  Due to these restrictions, passengers book in a particular fare class regardless 
of the availability of other fare classes.  In this structure, the demand for any fare class is 
no longer )( ki Sd but rather id , as demand does not depend on the strategy chosen.  

Since there is no sell-up or buy-down in a fully restricted structure, there is no demand 
classified as price-oriented, so demand for a fare class is simply prod

id .  Total demand iQ 

is the sum of the individual fare class demands from 1 to i , and total revenue is 
calculated j

ij
ji fdTR

,...,1

.    

It is evident that the optimal seat allocation policy for a fully restricted fare structure is to 
make seats available from the highest fare class downward until either demand is 
satisfied or capacity is reached.  Table 3-5 shows that the first three fare classes receive a 
number of seats equal to demand, while fare class 4 can only be allocated 27 seats as 
capacity is reached.  This is the optimal allocation for this deterministic example, giving a 
total revenue of $53,125.   

Fare Demand 
Booked 

Revenue 

1 1000 20 
20 

20,000 

2 650 18 
18 

11,700 

3 400 35 
35 

14,000 

4 275 58 
27 

7,425 

                                                                                     Total Revenue = $53,125 
Table 3-5: Bookings with Demands and Corresponding Revenues for Fully 

Restricted Fare Structure     
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3.2.2.2 Fully Unrestricted Fare Structure  

With the absence of any restrictions or advance purchase requirements, a fully 
unrestricted fare structure has no demand segmentation ability, and the only difference 
between fare classes is the price.  As opposed to the previous section where bookings 
were made in multiple fare classes, all passengers who are willing to pay more than the 
price of the lowest offered fare will simply buy-down and book in the lowest available 
fare class.  

With this fare structure, demand for a fare class is affected by the availability of other 
fare classes as the demand independence assumption is no longer valid.  Whereas demand 
for a fare class in the previous section was id , a fully unrestricted structure makes the 

optimization strategy a factor, so fare class demand is given as )( ki Sd .  However, with 

no restrictions, 100% buy-down into the lowest available class will occur.  Therefore, all 
fare classes that are not the lowest available fare class will have zero demand.  Since no 
passengers will book based on the attributes of a fare class, all of the demand for the 
lowest available class is price-oriented and denoted price

id .   

In order to optimize a fully unrestricted fare structure, the lowest available class to be left 
open must be determined in order to maximize revenue.  Because of the 100% buy-down, 
demand for a class iC , given it is the lowest available class, is the sum of the product 

demands for iC  and all higher classes.  For this example, 38212 ddd price .   

An equivalent way of determining the price-oriented demand for a fare class is using the 
sell-up rate nii QQpsup / , the ratio of the total demand when class i  is the lowest open 

to the total demand of leaving all classes open.  A more intuitive explanation of sell-up is 
the probability a passenger, given he is willing to book in class n , will book in class i

 

if 
it is the lowest available class.  Therefore, the demand for the lowest available class can 
also be calculated )( ii Sd = in psupQ .          

As Table 3-6 illustrates, the optimal policy for this example is to close class 4 and have 
class 3 be the lowest available class.  Notice that the plane is not filled to capacity (73 
passengers), but in implementing the strategy 4S to fill every seat, total revenue would 
have been lost as passengers would have booked at $275 instead of $400.  There is also a 
large difference in the total revenues of the optimal strategies for the two different fare 
structures as the loss of demand segregation leads to large revenue losses.         
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Fare Demand 
Booked 

Revenue 

1 1000 20 
0 

20,000 

2 650 38 
0 

24,700 

3 400 73 
73 

29,200 

4 275 131 
0 

27,500 

                                                                                     Total Revenue = $29,200 
Table 3-6: Bookings with Demands and Corresponding Revenues for Fully 

Unrestricted Fare Structure  

3.2.3 Marginal Revenue Transformation  

In section 3.2.1, it was shown that Fare Adjustment changes the value inputted to the LP, 
and that instead of inputting the OD Fare, a value called the PE Cost is subtracted from 
the OD Fare to account for the possibility of buy-down and the LP calculates the 
displacement cost of each leg using these pseudo fares.  The altered input value to the LP 
is also called the Marginal Revenue for an itinerary.  If the variable costs of producing an 
extra airline seat are ignored, the Marginal Revenue methodology says to “allocate seats 
according to their marginal revenue until the marginal revenue of the last seat is negative 
or capacity is reached”69.  The following sections will introduce the Marginal Revenue 
Transformation and prove its validity through application to the preceding examples.  

This methodology is very helpful for airline RM systems, as it allows a general problem 
with dependent demand to be essentially transformed into independent demand.  The next 
sections will show that if we know the optimal strategy for a problem with dependent 
demand and perform the Marginal Revenue Transformation on the fare classes, then treat 
the demand for these new classes as independent, the same optimal strategy will again be 
found.  Then, since the transformed fare classes are treated as independent, traditional leg 
and OD optimizers that operate under the demand independence assumption can be used.  

The Marginal Revenue Transformation takes the original fare classes and maps them into 
primed booking classes '

kC with corresponding primed demands and fares as shown.  

Since the fare classes are assumed to be nested, the primed demand for a fare class k is 
the difference in total demands when k is the lowest available class and when 1k is 
the lowest available.  The primed fare is the marginal revenue for that fare class.  It 
calculates the change in total revenue given the change in total demand if fare class k is 
opened.    
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MARGINAL REVENUE TRANSFORMATION
69: 

nkQQd kkk ,...,1,1
' .  

nkQQTRTRf kkkkk ,...,1,11
'

  
The marginal revenue value for a fare class is used to determine the optimal strategy by 
determining which fare classes should be open or closed.  Since the methodology states 
that seats should only be allocated to fare classes with positive marginal revenues, 
negative marginal revenue fare classes will be closed, and the optimal strategy will be 
obtained.  

For the Marginal Revenue Transformation methodology to be valid, two things must be 
shown: first, that the primed fare classes are indeed independent, and second, that treating 
these primed fare classes as independent yields the same demand and revenue as the 
dependent structure for any given strategy.  Fiig et al. provide analysis where both 
arguments are proven true, therefore the Marginal Revenue Transformation can be 
applied to the preceding examples to show that the optimal strategy is identical using 
either methodology.  

3.2.4 Application of Marginal Revenue Transformation  

In the following subsections, the original single leg, deterministic demand optimization 
problem that was solved earlier will be re-solved using the Marginal Revenue 
Transformation.  This will show for a very simplified example that the optimal strategy is 
the same when using the transformation to create independent fare classes.  The notation 
used will be identical to that introduced in the preceding sections.   

3.2.4.1 Fully Restricted Fare Structure  

The Marginal Revenue Transformation can be applied to any general fare structure in 
order to create primed fare classes that are independent, essentially creating a fully 
restricted fare structure.  Obviously, a fare structure that is already fully restricted does 
not need to be transformed, or in the same way, applying the Marginal Revenue 
Transformation to a fully restricted fare structure will generate the exact same fare 
structure.    

The marginal revenue value that is fed into the LP is calculated “OD Fare – PE Cost”, 
and the PE Cost is only applied when there is a risk of buy-down.  Put another way, the 
PE Cost is only applicable to fare classes with price-oriented demand.  For a fully 
restricted fare structure, there is no risk of buy-down and consequently no PE Cost for 
any fare class.  Therefore, the full OD Fare value is fed into the LP, just as the Marginal 
Revenue Transformation shows that the adjusted fare equals the OD Fare.      
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3.2.4.2 Fully Unrestricted Fare Structure  

Since all demand in a fully unrestricted fare structure is classified price-oriented, each 
fare class (except for the highest fare class because it will be open until capacity is 
reached) has an associated PE Cost and subsequently a marginal revenue value that is 
lower than the current fare.  The mapping of the unrestricted fare classes to independent 
primed fare classes is done as outlined in section 3.2.3 (general solutions in Fiig et al.).   

iC if iQ iTR 1iii TRTRTR

 

1
'

iii QQQd

 

QTRfi /' 

1 1000 20 20,000 (20,000 – 0) = 
20,000 

(20 – 0) =  
20 

1,000 

2 650 38 24,700 (24,700 – 20,000) = 
4,700 

(38 – 20) =  
18 

261.11 

3 400 73 29,200 (29,200 – 24,700) = 
4,500 

(73 – 38) =  
35 

128.57 

4 275 131

 

27,500 (27,500 – 29,200) = 
-1,700 

(131 – 73) = 58 -29.31 

Table 3-7: Marginal Revenue Transformation on Fully Unrestricted 
Structure  

Table 3-7 shows the Marginal Revenue Transformation on the example used in this 
chapter.  The first three fare classes have positive marginal revenues and would be 
available for bookings.  The negative marginal revenue for the lowest fare class indicates 
that if this class were made available, total revenue would decrease from the preceding 
strategy of fare class 3 being the lowest available class.  Clearly, fare class 4 would not 
have any seats allocated to it and would be closed.  This is the identical strategy that was 
calculated in section 3.2.2.2.  

The table shows that the fare for the highest fare class remains unchanged, while the 
adjusted fare for fare class 2 is 261.11, a substantial reduction from the actual fare of 
$650.  Fare class 4’s marginal revenue is negative, which means that if this class were 
opened, the revenue lost from passengers who would have booked in class 3 booking in 
class 4 would have been greater than the revenue generated from the increased number of 
bookings.  This is more easily explained by examining fare class 2.  

When fare class 2 is opened, revenue is lost due to the buy-down of passengers from 
class 1 to 2.  These 20 passengers, instead of paying $1000, are paying $650, a loss in 
revenue of 20(1000-650) = $7000.  In contrast to the fully restricted fare structure when 
the incremental revenue of opening class 2 is 18*650 = $11,700 because no buy-down 
occurs, the incremental revenue for class 2 in the fully unrestricted fare structure is 
reduced by this buy-down revenue loss, making the marginal revenue  
18*650-$7000=$4700.  Consequently, the marginal revenue for fare class 2 is 4700/18 = 
261.11.    
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Dem.
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Priceable demand

Dem.

Marginal Revenue Independent demand
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Figure 3-5: Mapping of Unrestricted Fare Classes to Independent (Primed) 
Fare Classes69  

Figure 3-5 shows the transformation of fully unrestricted fare classes into independent, 
primed fare classes.  Table 3-7 shows the marginal revenue values for the primed classes 
on the right.  Even without the actual marginal revenue figures, the optimal strategy could 
be found from a graph such as Figure 3-5, as any fare class mapped to a primed fare class 
with negative marginal revenue should be closed.  

3.2.4.3 Semi-Restricted (Hybrid) Fare Structure  

Finally, the Marginal Revenue Transformation can be used on a semi-restricted fare 
structure, which is much more common in the airline industry, particularly for legacy 
airlines.  In this structure, some classes will be fully unrestricted with the only 
differentiator being price, while other classes will be fully restricted with independent 
demand.  

When a hybrid fare structure is applied to the current example, demand for a fare class 
cannot be wholly classified either price- or product-oriented, but instead is a combination 
of both categories of demand.  It is evident, then, that the total demand for a fare class is 
the product-oriented demand along with the demand that will sell-up to the given class 
but not to the next higher class, 1

'
kkn

prod
kk psuppsupQdd 69.    

Fiig et al. introduce a new variable kx defined as the ratio of product-oriented demand to 

the total demand for a fare class.  Solving for the marginal revenue in terms of kx gives 

kkk fxfxf ')1('

 

(refer to Fiig et al. for derivation).  It can be seen that the marginal 

revenue for a fare class in a hybrid fare structure is the unadjusted fare weighted by the 
product-oriented demand and the adjusted fare weighted by the price-oriented demand.  
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Obviously, classes with a larger proportion of price-oriented demand will have lower 
adjusted fares and therefore be more likely to be closed.   

The hybrid fare structure marginal revenue equation is important because it provides a 
link between restrictions in a fare structure and the aggressiveness of the optimization 
strategy.  The less the demand segmentation ability, the higher the risk of buy-down, and 
therefore the marginal revenue of the fare classes will be lowered further to mitigate that 
risk.  

To illustrate Fare Adjustment for a semi-restricted fare structure, the following four-class 
flight leg example in Table 3-8 will be used (note the fares and demands are different 
than the previous example):  

iC if price
id prod

id ipsup

 

1 1000 5 15 10% 
2 750 12 11 35% 
3 450 32 15 70% 
4 175 77 0 100% 

Table 3-8: Fares, Demands and Sell-Up Rates for Semi-Restricted Fare 
Structure Example  

The price-oriented demand for each fare class is the number of price-oriented bookings 
that occur in that fare class if it is the lowest available class.  By definition, the lowest 
possible fare class cannot have any product-oriented demand.  

As seen earlier, a fully restricted fare structure does not need to adjust fares as there is no 
risk of buy-down.  Since there is only buy-down risk for fully unrestricted fare structures, 
the final adjusted fare for a fare class in a hybrid fare structure will be lower than the 
actual fare only if that fare class has some price-oriented demand associated with it.  
Therefore, the adjusted fare for the price-oriented demand is calculated as before, then it 
is combined with the ratio of product-oriented demand and unadjusted fare to find the 
final adjusted fare for a fare class.  Table 3-9 illustrates the Marginal Revenue 
Transformation performed on the price-oriented demand, and Table 3-10 shows the final 
adjusted fares.          
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iC if price
id price

iTR

 
price

i
price

i

price
i

TRTR

TR

1

 
price

i
price

i

price
i

price
i

dd

dd
'

1
'

'

 
price

i

price
iprice

i
d

TR
f ' 

1 100
0 

5 5,000 (5,000 – 0) = 
5,000 

(5 – 0) =  
5 

1,000 

2 750

 
12 9,000 (9,000 – 5,000) =  

4,000 
(12 – 5) =  

7 
571.43 

3 450

 

32 14,400 (14,400 – 9,000) =  
5,400  

(32 – 12) =  
20 

270.00 

4 175

 

77 13,475 (13,475 – 14,400) = 

 

-925 
(77 – 32) =  

45 
-20.56 

Table 3-9: Marginal Revenue Transformation of Price-Oriented Demand in a 
Hybrid Fare Structure  

iC 
1

'
iin

prod
ii psuppsupQdd iii fxfxf ')1('

 

1 23)0.010.0(7715

  

10001000)
20

15
1(1000)

20

15
(

 

2 30)10.035.0(7711

 

45.65643.571)
23

11
1(750)

23

11
(

 

3 42)35.070.0(7715

 

47.32700.270)
47

15
1(450)

47

15
(

 

4 23)70.00.1(770

 

56.2056.20)
77

0
1(175)

77

0
(

 

Table 3-10: Total Marginal Revenue Transformation of a Hybrid Fare 
Structure  

This example shows the connection between restrictions and aggressiveness of fare 
adjustment.  With more restrictions and a greater ability to segment demand, most of the 
demand is product-oriented, thereby weighting the unadjusted fare more heavily and 
reducing the risk that a particular fare class is shut down.  Conversely, in fare structures 
that can only weakly segment demand, the adjusted fare from the price-oriented demand 
is more heavily weighted, driving the final adjusted fare lower and increasing the 
likelihood a fare class is closed in order to account for the buy-down possibility.  

This chapter has reviewed two new RM methods designed to reduce the revenue loss of 
simplified and mixed fare structures: Hybrid Forecasting and Fare Adjustment.  The next 
chapter will cover the Passenger Origin-Destination Simulator (PODS) which will be 
used for the evaluation of the performance of these two new RM methods.  The 
implementation of HF and FA in PODS will also be shown, as well as the mechanism in 
PODS that links the aggressiveness of the Fare Adjustment to the corresponding fare 
structure.   
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3.3 CHAPTER SUMMARY  

In this chapter, two new techniques for reducing the revenue loss from less restricted fare 
structures were introduced: Hybrid Forecasting and Fare Adjustment.  The two 
forecasting techniques for the two different types of demand were presented, as Q-
forecasting is used for price-oriented demand, while standard pick-up forecasting 
continues to be used for product-oriented demand.  These two demand forecasts are then 
combined in HF to create a single forecast value for each fare class.  

Next, Fare Adjustment was discussed in detail.  First, the need for FA was developed 
using the virtual buckets of DAVN as an example of how two different fare structures 
could become coupled and lead to sub-optimal decisions.  Fiig et al.’s Marginal Revenue 
Transformation was then presented through a common example applied to different fare 
structures.  In a semi-restricted fare structure, the adjusted fare is a combination of the 
full, unadjusted fare and the fully adjusted fare, weighted by the product and price 
demand forecasted for the fare class.  Finally, a new example was given for a semi-
restricted fare structure to illustrate FA’s ability to close classes when there is a risk of 
buy-down.  
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CHAPTER 4 
PODS SIMULATION ENVIRONMENT  

Simulation is often better suited to model the competitive airline environment as static 
analytic revenue management models must assume away certain parts of the problem in 
the name of simplification.  Although this allows for rigorous treatment of different 
revenue management techniques, competitive behavior between airlines and the 
passenger choice dynamic are usually excluded from the analysis70.  Simulation-based 
analysis allows for revenue management practices to be modeled in a dynamic 
environment complete with the interactions between passenger choice and the revenue 
management system.  

This chapter first presents an overview of the Passenger Origin-Destination Simulator 
(PODS) which is used to test both Hybrid Forecasting and Fare Adjustment.  This 
overview will detail the components of the passenger choice model, the revenue 
management system, and the interaction between these two elements.  The main part of 
the chapter will be devoted to the implementation of different seat-allocation optimizers, 
sell-up estimators, and the two new RM methods in PODS.  Finally, the simulated four-
airline environments used for analysis will be introduced.  

4.1 PODS ARCHITECTURE  

PODS, which was originally developed by C. Hopperstad, M. Berge, and S. Filipowki at 
the Boeing Company, was developed from Boeing’s previous Decision Window Model 
(DWM)71 which determined a passenger’s choice based on multiple variables, such as 
schedules and airline characteristics.  However, the DWM left out the fares and 
restrictions associated with these fares, factors that would also influence passenger 
choice.  Although the bulk of the passenger choice model in PODS replicates the DWM, 
a passenger’s choice set now includes multiple fare products.  The incorporation of fare 
products into the passenger choice model allow the effects of a new revenue management 
technique to be tested in a competitive environment.  

A PODS simulation is referred to as a “run”.  A “run” consists of both “trials” and 
“samples”: a run of our four-airline environment will consist of two trials, and a single 
trial consists of 600 samples.  A sample is a single departure day (i.e. a Friday), and this 
day is replicated 600 times in order to ensure statistically significant results.  The overall 
operating statistics for a “run” are the average of the two “trials”.   

                                                

   

70 Gorin, T., P. Belobaba. (2004). Revenue management performance in a low-fare airline environment: 
insights from the Passenger Origin-Destination Simulator. Journal of Revenue and Pricing Management. 
Volume 3, Issue 3, pp. 215-236.   
71 Boeing Airplane Company. (1997). Decision Window Path Preference Methodology Description. Seattle, 
WA. 
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In order to start a PODS run, user-defined inputs must be fed into the system.  As the 
simulation progresses, these values are eventually replaced by calculated values.  In order 
to analyze results generated by the simulation, the first 200 samples of every trial are 
discarded.  Therefore, the results of a 600-sample trial are only based on the last 400 
samples, and a full PODS simulation run is the averaged result of 800 samples.    

For each sample, the booking process in PODS begins 63 days before departure and is 
broken into 16 succeeding time frames that end on the departure day.  At the beginning of 
the booking process the time frames last a week, but as the departure day nears the length 
of the time frames decrease in anticipation of increased booking activity as shown in 
Table 4-1.  The revenue management systems of the airlines update the path/class 
availabilities at the start of each time frame, while passenger events such as bookings and 
cancellations occur randomly within each time frame.     

Time Frame                       1        2        3        4        5        6        7        8        9        10        11        12        13        14        15        16_           
Days to Departure       63      56      49      42      35      31      28      24      21      17        14        10         7          5          3          1         0 

Table 4-1: Booking Process Time Frames  

PODS is a simulator that links together passenger choice with airline RM systems in 
order to analyze the effectiveness of different RM techniques.  The third generation RM 
system (see section 2.1) calculates the air travel options to offer to prospective 
passengers.  This information is then passed to passengers searching for air travel in a 
particular OD market who then choose a particular airline, path, and fare class based on 
the options available from the RM system and the passenger’s characteristics.  The PODS 
structure is shown in Figure 4-1.  

PASSENGER CHOICE MODEL REVENUE MANAGEMENT SYSTEM

Passenger Characteristics

Demand Generation

Passenger Choice Set

Passenger Decision

Seat Allocation 
Optimizer

Decision Window Model

Historical Bookings 
Database

Forecaster

Historical 
Bookings

Future 
Bookings

Updates

Current 
Bookings

Path/Class 
Availability

Path/Class 
Bookings and 
Cancellations

 

Figure 4-1: PODS Structure   
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4.1.1 Passenger Choice Model  

The effectiveness of a RM technique and its ability to maximize revenues is dependent on 
the response (or lack thereof) from passengers.  The Passenger Choice Model in PODS 
manages the behavior of passengers and their choices relative to path/class availability 
through four succeeding steps: Demand Generation, allocation of Passenger 
Characteristics, identification of a Passenger Choice Set, and ultimately the Passenger 
Decision.  This section will provide an overview of the Passenger Choice Model, but a 
more in-depth discussion with model validation can be found in Carrier72.  

4.1.1.1 Demand Generation  

In this step, average daily air travel demand based upon data from the PODS Consortium 
airline members is generated for every OD market in the network.  This total generated 
demand is then partitioned  between leisure and business passengers.  Variability is then 
generated randomly around this average daily demand, creating the daily demand curve 
for each type of passenger.  However, seasonality and day-of-week variability is not 
included in the demand generation process.  Lastly, the arrival pattern through the 
booking process for each group of passengers is modeled according to user-defined 
booking curves: the booking curves used in this thesis for both business and leisure 
passengers are shown in Figure 4-2.  These curves are also based on data from the PODS 
Consortium’s airline members that show leisure travelers tend to arrive earlier in the 
booking process than business travelers.   

                                                

   

72 Carrier, E. (2003). Modeling Airline Passenger Choice: Passenger Preference for Schedule in the 
Passenger Origin-Destination Simulator (PODS). Master’s Thesis, Massachusetts Institute of Technology, 
Cambridge, MA. 
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Figure 4-2: PODS Booking Curves by Passenger Type  

The demand generation process in PODS is impacted by two inputs: the base fares and 
the number of passengers willing to travel at those base fares.  For a given base fare, 
there is an associated number of passengers of each passenger type willing to travel at 
that fare.  In PODS, the user can generate higher or lower levels of demand by 
manipulating a setting called the Demand Multiplier (DM).  The average demand 
resulting from the base fare and passenger numbers is given a DM of 1.00.  Different 
multiples of the baseline demand can be obtained by scaling this number.  In this thesis, 
Fare Adjustment will be tested in the average demand environment of 1.00 and lower 
demand environments using Demand Multipliers of 0.90 and 0.80.  

4.1.1.2 Passenger Characteristics  

In the second step of the Passenger Choice Model, three sets of characteristics are 
assigned to the passengers generated by the preceding step: a decision window, a 
maximum willingness-to-pay (WTP), and a set of disutility costs indicating the 
passenger’s sensitivity to different aspects of a possible booking.  

Each passenger’s decision window is defined by the earliest acceptable departure time 
and the latest acceptable arrival time.  Business travelers are given smaller decision 
windows than leisure travelers demonstrating their time sensitivity.  At this point, without 
factoring in WTP and disutility costs, all path and fare class combinations which are fully 
contained within a passenger’s decision window are equally appealing, while those not 
fully within the decision window are all equally unappealing as they require re-planning 
of the decision window.   
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Next, the passenger is given a maximum WTP, the maximum amount a passenger is 
willing to pay for air travel.  The WTP is calculated from price-demand curves for both 
business and leisure travelers, which are calculated with user inputs from the formula:  

],1min[)least at P(pay )1(

()5.0ln(

basefareemult

basefare)f

ef

  

where:    f is the fare; 
basefare is an input in PODS, at which an input specified  number 
of passengers are willing to pay to travel; 
emult is the elasticity multiplier such that 50% of passengers are 
willing to pay emult*basefare to travel; 

Leisure travelers are given a smaller emult, which results in a quick drop off in their 
price-demand curve to reflect their high price sensitivity.  Any fare that exceeds a 
passenger’s maximum WTP will be removed from that passenger’s choice set.  

Finally, a passenger is assigned disutility costs that are randomly generated from a 
probability distribution based on his passenger type.  These disutility costs represent the 
passenger’s sensitivity to schedule preference (re-planning for a path outside the decision 
window), path quality (non-stop versus connecting itineraries), and restrictions associated 
with a fare product (Saturday night stay, non-refundability, change fee).  A more 
comprehensive discussion of disutility costs in PODS can be found in Lee73.  

4.1.1.3 Passenger Choice Set  

After the passenger has been assigned a full set of characteristics, he is presented with a 
set of paths and fare classes from which to choose (the passenger always has the “do-
nothing” option as well).  These travel options are provided from the Seat Allocation 
Optimizer in the Revenue Management System (see Figure 4-1).  Some of the options 
will immediately be removed from the passenger’s choice set, as either the RM system of 
one or more airlines has closed down a path/fare class in the desired OD market, advance 
purchase requirements cannot be met, or the fare is higher than the passenger’s maximum 
WTP.    

4.1.1.4 Passenger Decision  

In order to make a decision, the passenger will sum up the fare and relevant disutility 
costs of each available option (called the total generalized cost) and choose the option 
with the lowest generalized cost (do-nothing or “no-go” alternative included).  This 
booking is then fed back into the airline’s RM system as the available seat inventory is 
decreased and the historical bookings database is increased. 
                                                

   

73 Lee, S. (2000). Modeling Passenger Disutilities in Airline Revenue Management Simulation. Master’s 
Thesis, Massachusetts of Technology, Cambridge, MA. 
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4.1.2 Revenue Management System  

The airline side of PODS consists of a third-generation RM system that is made up of 
three components: a Historical Bookings Database, a Forecaster, and a Seat Allocation 
Optimizer.  The link between the passenger side and the airline side in PODS exists 
between the Seat Allocation Optimizer of the RM system and the Passenger Choice Set 
and Passenger Decision of the Passenger Choice Model as seen in Figure 4-1.  

4.1.2.1 Historical Bookings Database  

In PODS, the Historical Bookings Database records the fare class and path of every 
booking on a particular airline.  Initially it is filled with default bookings provided by the 
user, but as the simulation progresses those are eventually substituted with actual 
bookings from the simulation (hence the first 200 samples are burned in a PODS trial).  
The user defines the number of observations of a given flight held in the database.  For 
the simulations in this thesis, 26 samples (previous departures) of each flight are held in 
the Historical Bookings Database to be used by the forecaster.  

4.1.2.2 Forecaster  

The forecaster in PODS takes booking data directly from the Historical Bookings 
Database in order to provide a forecast of future demand by fare class and path.  As 
described in section 3.1, pick-up forecasting for product-oriented demand and Q-
forecasting for price-oriented demand is combined to provide a path/class forecast 
through Hybrid Forecasting.  

The data taken directly from the Historical Bookings Database is inherently biased 
because it only reports demand that actually booked an itinerary.  There may have been 
prospective passengers who wished to book travel but were unable due to the seat 
availability of a fare class.  Therefore, the demand data given to the forecaster must be 
“unconstrained”, which means estimating the number of bookings that would have 
occurred had the particular fare class been open indefinitely.  In this thesis, the Booking 
Curve detruncation method, a percentage-based multiplier that extrapolates demand for 
closed classes from trend data from open classes, is used.  More detailed analysis of 
detruncation techniques can be found in Usman26 and Gorin27.  

4.1.2.3 Seat Allocation Optimizer  

With the capacities of flight legs in the upcoming PODS runs ranging from 50 to 150, the 
Seat Allocation Optimizer must allocate these perishable seats in such a way as to try and 
maximize revenue.  Each airline in a simulation run can be given a different Seat 
Allocation Optimizer, and PODS allows the user to choose from a number of different 
optimizers with a range of sophistication levels.  The three main optimizers used in thesis 
will be Adaptive Threshold 90 (AT90), EMSRb, and DAVN.  The results of two other 
optimizers will be shown for comparison purposes in the next chapter, Heuristic Bid-
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Price (HBP) and Probabilistic Bid-Price (PBP).  Descriptions of these two optimizers can 
be found in Cléaz-Savoyen66.  

4.1.2.3.a First Come First Served (FCFS)  

This inventory control mechanism actually performs no optimization at all, instead 
allowing all passengers to book in any fare class that has not been closed due to advance 
purchase requirements until capacity is reached.  This is normally used as a way of 
measuring the performance of RM systems.  

4.1.2.3.b Threshold Algorithms  

The first step to improving upon the FCFS method and actually managing booking limits 
is by using a Threshold Algorithm.  A load factor threshold, between 0% and 100%, is set 
for each class and when the threshold is met, the class is closed down.  There are two 
ways of implementing a Threshold Algorithm: Fixed Threshold and Adaptive Threshold.  
The Fixed Threshold, as it indicates, uses load factor thresholds inputted at the beginning 
of the simulation and stays constant all the way through the booking process.  An 
Adaptive Threshold Algorithm has an overall target load factor – in this thesis 90% - set 
at the onset of the simulation, and the individual fare class thresholds are computed at 
each time frame by the bookings received up to that point in the booking process in order 
to achieve the target (90%) load factor.  The user can also control the fluctuations of the 
fare class thresholds by assigning minimum and maximum bounds on the individual load 
factors (see Lua8).  In this thesis, this Seat Allocation Optimizer is used to imitate a 
simple revenue management system employed by a LCC.     

4.1.2.3.c Fare Class Yield Management (FCYM)  

This leg-based method sets booking limits on nested fare classes based on the Expected 
Marginal Seat Revenue (EMSRb33, see section 2.1.3.1), the expected amount of revenue 
to be obtained by making the next seat available for a given class.  Therefore, EMSR = 
OD Fare * probability of selling the seat.  Under the assumption of demand 
independence, an incremental seat is held for a given fare class as long its EMSR is 
greater than the EMSR of the class beneath it.  An example of booking limits set by using 
the FCYM method is shown in Table 4-2.  

Class Fare Avg 
demand 

Stdev 
demand 

Booking 
Limit 

1 450 18 6 100 
2 325 21 7 86 
3 200 28 9 62 
4 125 35 11 30 

Table 4-2: Example of EMSRb with Capacity = 100 
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The booking limit for each class is the maximum number of seats that the airline should 
sell in that particular fare class.  For example, if the booking limit for fare class 3 is 
reached, any subsequent request for a seat will only be presented with fare class 2 or 1 as 
available booking options.  The nested booking limits for this example are shown in 
Figure 4-3.  

Fare Class

1 2 3 4

Seats

Capacity

14 seats protected for class 1 from classes 2,3,4

10
0 

av
ai

la
bl

e 
se

at
s 24 seats protected for classes 1,2 from classes 3,4

32 seats protected for classes 1,2,3 from class 4

30 fare class 4 seats available

 

Figure 4-3: Nested Booking Limits with Capacity = 100  

4.1.2.3.d Displacement Adjusted Virtual Nesting (DAVN)  

DAVN, as described in both sections 2.1.3.2 and 3.2.1, utilizes path/class forecasting in a 
network LP to calculate the displacement costs of a connecting passenger for each leg.  
Williamson34 provides more detail on the network LP problem.  The displacement costs 
are then subtracted from the OD Fare for a particular itinerary and mapped into a virtual 
bucket, which is then managed at a leg level.  

Since Fare Adjustment was designed for use with this method, simulation runs with 
DAVN will be more heavily analyzed when determining the effectiveness of Fare 
Adjustment.  

4.2 SELL-UP ESTIMATION  

The Revenue Management system uses a passenger’s maximum willingness-to-pay 
(WTP) in order to calculate the probability the passenger will sell-up to a higher fare 
class than he otherwise would have booked.  This sell-up probability is used in both Q-
forecasting (section 3.1.1) and the EMSRb algorithm (discussed in more detail in Cléaz-
Savoyen66) to force passengers to pay closer to their max WTP’s.  This section will 
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discuss the sell-up implementation in PODS as well as two methods for estimating sell-
up from historical bookings.  

4.2.1 Sell-Up Implementation in PODS  

The probability of sell-up in PODS is based on a negative exponential distribution.  
Therefore, the probability a random passenger would book in class f given that he 
would have booked in the lowest class (denoted Q ) and no other lower class is available 
is calculated:  

tf
Q

f econ
fare

fare

fQ epsup
)1(  

where:    ffare is the price of the higher fare class; 

Qfare is the price of the lowest fare class; 

tfecon is the sell-up constant for time frame tf ;  

In order to calculate the sell-up probability to a fare class f , the airline must input a 

value for tfecon .   

15

)
2

1
ln(

tf
tf Frat

econ 

   
Frat5 is the fare ratio from the lowest fare class at which 50% of the passengers will sell-
up to a higher fare class.  Frat5 is used by airlines in PODS to determine passengers’ 
willingness-to-pay, so a higher frat5 means that the fare ratio where 50% of the 
passengers will sell-up to is higher, corresponding to lower price sensitivity, higher 
WTP’s and higher probabilities of sell-up.    

Since it is assumed that business travelers (who also have higher WTP’s) tend to arrive 
later in the booking process than leisure passengers, the frat5 curve in PODS generally 
increases following an “S-curve” toward the departure date.    
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Figure 4-4: Example of Frat5 S-curve (Frat5C)  

As Figure 4-4 shows, the S-shape of the Frat5 curve captures the increase in WTP 
throughout the booking process.  At 63 days from departure (time frame 1), 50% of the 
passengers would only be willing to sell-up to a fare of $120 (assuming the base fare is 
$100).  However, with only one day before departure (time frame 16), 50% of the 
passengers would be willing to sell-up to a fare of $300.  This particular frat5 curve is 
denoted Frat5C as created by Cléaz-Savoyen66, who created five arbitrary frat5 curves of 
varying aggressiveness for sensitivity analysis.    

When an airline in PODS uses a higher frat5 curve to calculate the sell-up probabilities, it 
is assuming its passengers have a high WTP and thus will protect more seats for higher 
fare classes in order to force passengers to book in those fare classes.  Figure 4-5 
illustrates this higher probability of sell-up with three frat5 curves with increasing 
aggressiveness.    
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Figure 4-5: Sell-Up Probability in a Time Frame by Frat5 Value67  

In Soo’s14 thesis, she examined the effectiveness of Fare Adjustment by inputting 
arbitrary frat5 curves in order to calculate the sell-up probability by time frame.  
Although PODS allows this input capability, airlines would most likely not arbitrarily 
input sell-up values into their RM systems.  Instead, an airline would utilize its Historical 
Bookings Database in order to estimate the sell-up probability at a particular time frame.    

The methodology for calculating sell-up was initially introduced by Hopperstad, and 
Cléaz-Savoyen66 provides a good description of this method in his thesis.  The following 
sections will cover the two sell-up estimators used in the simulation runs in this thesis.  
Most of the discussion on the Inverse Cumulative (IC) and Forecast Prediction (FP) 
estimators is based on work from Hopperstad74 and Guo75.  

4.2.2 Inverse Cumulative Estimator  

The more straight-forward of the two estimators used, Inverse Cumulative (IC) operates 
under the assumption that passengers will buy-down into the lowest available fare class 
(price-oriented demand).  The estimator is based upon the belief that any passenger who 
is willing to book at some multiple of the base fare Q  is also willing to book at any lower 
fare level.  Figure 4-6 shows the process of calculating the observed sell-up probability. 

                                                

   

74 Hopperstad, C. (2007). Methods for Estimating Sell-up: Part II. AGIFORS Joint Revenue Management 
and Cargo Study Group Meeting. 
75 Guo, J. C. (2008). Estimating Sell-Up Potential in Airline Revenue Management Systems. Master’s 
thesis, Massachusetts Institute of Technology, Cambridge, MA.   
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Calculate average # of bookings by 
fare class from past 26 samples

For each class, sum up bookings in 
that class and all higher classes (IC 

bookings)

Calculate sell-up probability for each 
fare class by dividing a fare class’s 
IC bookings by lowest class Q IC 

bookings

When new sample added…

 

Figure 4-6: Method for Calculating Observed Sell-Up Probability in IC  

The first step involves the previous 26 samples as PODS only refers back to the previous 
26 departures of a flight for calculations in this thesis.  The IC estimator calculates the 
observed sell-up probability to each fare class by time frame.  Therefore, when a new 
sample is added, that is the number of bookings in the lowest available fare class in the 
same time frame as all of the other 25 samples being used to generate the sell-up 
probabilities for a particular time frame in the booking process.  The observed sell-up 
rates are normalized to the 1.0 sell-up rate for the lowest fare class Q .     

As Hopperstad74 and Guo75 both show, two regressions follow that allow for a frat5 to be 
obtained for each time frame.  The first least squares regression is within the time frame 
and is used to calculate b  such that the following equation is minimized:  

ratio fare

21) - ratio fare(
ratio fare obs, )( bepsup  

b is the first estimate of the tfecon and fits the data to a negative exponential.  The 

second regression is across all time frames and sbtf ' to calculate 

slopeicpt and )(intercept  and minimize:  

tf

2)]tf([ tfbslopeicpt  

Once slopeicpt and  have been found from the two minimization regressions, a frat5 
value can be calculated for each time frame. 



    

61   

1   
(

)5.0ln(
5

tf) slopeicpt
frat tf  

The sell-up probability for each time frame can then be solved for using the equations 
introduced in section 4.2.1.    

A criticism of the IC estimator is that it is biased.  Bookings made in the lowest fare class 
and the highest fare class are taken as equal although bookings can only occur in the 
highest fare class if there is high demand for a flight and the RM system has closed lower 
fare classes.  The opposite can be said for bookings in the lowest fare class, but the 
inherent demand differences with different historical bookings is not taken into account.  

4.2.3 Forecast Prediction Estimator  

Forecast Prediction (FP) uses the historical bookings from the past 26 samples and 
converts them into the associated Q forecast for the time frame.  These Q forecasts are 
then used to calculate the estimated sell-up probabilities.  One argument for the use of FP 
is that the ratio of actual bookings to forecast Q bookings represents a correction to the 
estimated sell-up values, and with a large enough number of corrections an accurate 
estimate of sell-up can be obtained.  The process for estimating sell-up from observed 
bookings is illustrated in Figure 4-7.  

Calculate average and total # of 
bookings by fare class from past 26 

samples
Begin process with 
input sell-up rates

Convert total bookings into total Q 
bookings for each fare class using 

estimated sell-up rates (section 3.1.1)

Compute average Q bookings by 
summing up total Q bookings and 

dividing by # of samples

Calculate estimated sell-up rates by 
dividing average bookings for each fare 

class by total average Q bookings

When new sample added…

 

Figure 4-7: Method for Calculating Observed Sell-Up Probability in FP  
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For the first iteration, sell-up rates inputted by the user are used to calculate total Q 
bookings for each fare class.  The forecast bookings are then used to calculate estimates 
of sell-up, which are then used when a new sample is added to convert historical 
bookings into Q bookings.  This is where the correction occurs, and a sufficient number 
of estimated sell-up rate corrections will generate accurate estimates.  As with the IC 
estimator, the observed sell-up rates are normalized to the 1.0 sell-up rate for class Q .    

The two regressions performed on the observed estimated sell-up rates are very similar to 
those in the IC process.  The first regression that occurs within a particular time frame 
adds a scaling factor a and a user-defined weight for each fare ratio.  This time, both 
a and b are selected so as to minimize the equation:  

ratio fare

21) - ratio fare(
ratio fare obs,ratio fare )( beapsupwt  

However, the second regression across all time frames is identical to IC, with the scaling 
factor a

 

being dropped from the regression and slopeicpt and being solved for by 
minimizing :  

tf

2)]tf([ tfbslopeicpt  

Conversion of both slopeicpt and into a frat5 is identical to IC, which is then used to 
calculate the sell-up probability.    

4.3 Implementation of New RM Methods in PODS  

Chapter 3 described in detail the two new RM methods to be analyzed in this thesis: 
Hybrid Forecasting (HF) and Fare Adjustment(FA).  This section will cover the 
implementation of these techniques into PODS now that the simulator and related 
terminology has been introduced.  

4.3.1 Hybrid Forecasting  

Section 3.1 provided the methodology of Q-forecasting and the incorporation of price- 
and product-oriented demand into a single forecast.  The implementation into PODS by 
Hopperstad uses the same equations as previously shown, re-calculated at the start of 
every time frame.  Therefore, in Q-forecasting, the sell-up rates calculated by the 
estimators are used both in the conversion to Q-equivalent bookings and the computation 
of the mean forecasted demand for a fare class.  Q-forecasting operates on price-oriented 
demand, while pick-up forecasting is performed on product-oriented demand, and they 
are summed together to create a single forecast for each fare class by time frame.  
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Currently in PODS, a passenger is considered price-oriented if he booked in the lowest 
available fare class.  Conversely, a passenger is considered product-oriented if the next 
lower class is available on the same path.  Reyes’67 thesis looked at different “rules” for 
product demand classification, and the “path rule” outperformed the other options.    

The largest problem with HF is identifying which passengers are in fact price-oriented 
and who are product-oriented.  Even for airlines which do not use HF (and may not use 
the price- and product-oriented terminology), the classification of leisure and business 
passengers is still a difficult task.  The current implementation in PODS is an estimate, as 
it is obvious that some passengers who book in the lowest available class are specifically 
looking for that fare product, irrespective of the availability of other fare classes.  It is 
also evident that some passengers who book in a fare class that is higher than the lowest 
available are not fully product-oriented.  For instance, in circumstances where the RM 
system leaves the lowest fare classes open, this passenger would purchase the lowest 
available fare class.  However, if the RM system has shut down the lower classes and 
only allows bookings in a few high classes, this passenger may decide he is paying more 
than he would like to pay anyway (but still below his max WTP), so he will book in a 
refundable fare class that is higher than the lowest available.  Under this scenario, the 
utility he derives from the refundable fare is greater than the disutility of the higher price.  
Therefore, this passenger would be considered price-oriented in some cases as he would 
purchase in the lowest available class, and product-oriented in others as he would choose 
to book in a fare class that is higher than the lowest available.    

This scheme is just one way of classifying demand.  Airlines face this same dilemma as 
the only information used for forecasting demand is booking data.  The only way to get a 
true account of passengers’ preferences and characteristics would be through a series of 
rigorous interviews, which no airline thus far has been willing to do.    

4.3.2 Fare Adjustment  

The Marginal Revenue Transformation was covered in detail in Section 3.2, where the 
corresponding equations for the adjusted fare in different fare structures were presented.  
This section will discuss the implementation of Fare Adjustment (FA) into PODS and the 
calculation of the PE Cost.  

4.3.2.1 FA Formulations in PODS  

In PODS, there are two different FA formulations: a continuous marginal revenue 
formulation (MR), and a discrete formulation (KI, for Karl Isler).  The following is the 
MR formulation implemented in PODS and is the formulation that is used for the 
simulation runs in this thesis.  

)5.0ln(

1)-(
'

 

FRAT5 FAf
ff Q

ii  
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The KI discrete formulation for fare adjustment is shown below.  

1ii

i1iii
i psuppsup

fpsupfpsup
f 1'   

4.3.2.2 FA FRAT5   

In section 3.2, the actual value input into DAVN’s LP with FA was not simply the OD 
Fare, but the Marginal Revenue, which is the OD Fare – PE Cost.  As the MR 
formulation in PODS shows, the PE Cost is calculated using the fare of the lowest class 
Q and a FA FRAT5.  Since the PE Cost is trying to account for buy-down, as passenger 
WTP increases, the PE Cost should increase as well, leading to lower classes being 
closed earlier.    

As Cléaz-Savoyen66 explains in his thesis, the frat5 values used by FA should be lower 
than the frat5 values used in Q-forecasting.  Instead of using two separate frat5’s and thus 
assuming two different WTP’s, the two frat5’s are linked using a scaling factor.  

)15(51 FRATsclf  FRAT5 FA  

The frat5 used in Q-forecasting is scaled by the value sclf 5 , between 0 and 1, in order to 
create the FA FRAT5.  Any airline in PODS using Q-forecasting (or HF) and FA must 
decide both on which frat5 to use for forecasting (or sell-up estimator) and which scaling 
factor to implement for FA that would best represent its passengers’ WTP.  Figure 4-8 
shows a FRAT5C curve and the resulting FA FRAT5 curves with various levels of 
scaling.    

 

Figure 4-8: PODS FA FRAT5 Curves at Different Scaling Factors 
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Figure 4-8 shows that scaling the FA FRAT5 downward causes it to become less 
aggressive.  This corresponds to Marginal Revenue values being fed into the LP that are 
higher than they would have been with a more aggressive scaling factor, therefore 
increasing the probability that the fare class will remain open.  As the results in Chapter 5 
show, this scaling factor is used to verify the adjusted fare equation from section 3.2.4.3 
that states the more price-oriented demand, the more aggressive the adjusted fare should 
be.  Therefore, in different fare structure environments with differing demand 
segmentation abilities, different scaling factors (closer to 1.0 for low segmentation fare 
structures and scaled down further for more restricted structures) will generate the highest 
revenue.    

4.4 PODS Simulation Environments  

The environment used in this thesis to evaluate the effectiveness of HF and FA is 
Network S.  This is a four airline (AL1, AL2, AL3, AL4), asymmetric, competitive 
market meant to model the US domestic market.  The network size and markets served 
differs by airline, while all four airlines operate hubs in the center of the US.  AL3 is 
modeled as a LCC, and the other three airlines are modeled as Network Legacy Carriers 
(NLC).    

Competition is created in the network not only through multiple airlines serving the same 
market either through direct flights or through a hub, but each airline also serves all 3 
competitor hubs in the network.  Figure 4-9 to Figure 4-12 depict the route structure of 
each airline in Network S.  
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Figure 4-9: Route Structure of AL1  
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Figure 4-10: Route Structure of AL2  
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Figure 4-11: Route Structure of AL3  
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Figure 4-12: Route Structure of AL4  

The largest airline, AL1, is based in Minneapolis-St. Paul and serves every market in the 
network through its hub, as well as three direct flights that bypass its hub.  AL2, with its 
hub in Chicago, is nearly as large as AL1, serving most of the markets in the network and 
incorporating six direct flights in its network.  AL3 is the LCC airline with a hub in 
Kansas City.  It is the smallest airline in terms of markets served (only about half of 
AL1’s markets), but in being modeled as an LCC offers much more point-to-point service 
than the other three airlines.  AL4 is the third legacy airline in the network and is based in 
Dallas-Fort Worth.  It serves the smallest number of markets out of the legacy carriers in 
Network S.     

The route structures for each airline are outlined in Table 4-3.  

Airline # of Origin 
Cities (Includes 

Other Hubs) 

# of Destination 
Cities (Includes 

Other Hubs) 

# of Hub 
Bypass 
Flights 

O-D Markets 
Served 

(Local/Connect) 
AL1 (MSP) 24 24 3 572 (49/523) 
AL2 (ORD) 24 23 6 548 (51/497) 
AL3 (MCI) 15 20 19 296 (44/252) 
AL4 (DFW)

 

18 24 4 428 (44/384) 
Table 4-3: Network S Route Structure by Airline  

Network S is a multiple fare structure environment.  Since AL3 is modeled as an LCC, its 
fare structure is more simplified and fares are compressed.  Since AL3 serves 296 
markets in direct competition with the other three airlines, the NLC’s in Network S match 
AL3’s fare structure in those 296 markets.  Therefore, the NLC’s operate a more 
restricted fare structure in the markets where they are not competing against LCC, and 
match AL3’s fare structure in the remaining markets. 
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In this thesis, two variations of Network S will be used: Network S1 and Network S4.  
The route structure and schedule of each airline remain the same in both variants.  The 
only difference between the two environments is the set of restrictions on the fare 
structure employed by AL3 (and matched by the other three airlines).    

4.4.1 Network S1  

Network S1 is the more realistic of the two networks, given 2008 fare structures in US 
domestic markets, with less stringent advance purchase and cancellation fee restrictions 
on the LCC fare structure than the more restricted structure.  Also, the LCC structure 
does not have minimum stay requirements for any fare class.  Table 4-4 outlines the fare 
structure in markets without LCC competition, and Table 4-5 shows the decrease in fares 
and restrictions in markets with an LCC presence.  

Fare 
Class 

Avg Fares Advance 
Purchase 

Min Stay Cancellation 
Fee 

Non-
Refundable 

1 $674.96 None None None No 
2 $530.33 3 days None Yes No 
3 $385.69 7 days None Yes Yes 
4 $257.13 10 days Yes Yes Yes 
5 $208.92 14 days Yes Yes Yes 
6 $160.71 14 days Yes Yes Yes 

Table 4-4: Fare Structure for Markets without LCC Presence in Network S1  

Fare 
Class 

Avg Fares Advance 
Purchase 

Min Stay Cancellation 
Fee 

Non-
Refundable 

1 $324.14 None None None No 
2 $250.95 None None Yes No 
3 $188.21 7 days None None Yes 
4 $146.38 7 days None Yes Yes 
5 $125.47 14 days None Yes Yes 
6 $104.56 14 days None Yes Yes 

Table 4-5: Fare Structure for Markets with LCC Presence in Network S1  

4.4.2 Network S4  

Network S4 is used not as a representation of fare structures airlines will necessarily 
encounter, but as a “proof of concept” environment in which to test both HF and FA.  It is 
the most extreme case for an LCC fare structure, one in which all restrictions are 
removed and all passengers will book in the lowest available class.  Therefore, HF and 
FA are tested in this extreme multiple fare structure scenario to evaluate the revenue 
gains they can produce.    
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As previously mentioned, the non-LCC fare structure remains identical to Network S1.  
Only the LCC fare structure is modified, with all restrictions and advance purchase 
requirements being removed.  Table 4-6 shows the new fare structure for these 296 
markets.  

Fare 
Class 

Avg Fares Advance 
Purchase 

Min Stay Cancellation 
Fee 

Non-
Refundable 

1 $324.14 None None None No 
2 $250.95 None None None No 
3 $188.21 None None None None 
4 $146.38 None None None None 
5 $125.47 None None None None 
6 $104.56 None None None None 

Table 4-6: Fare Structure for Markets with LCC Presence in Network S4  

4.5 Chapter Summary  

This chapter began by introducing the PODS simulator and the two major components: 
the Passenger Choice Model and the Revenue Management System.  The three Seat 
Allocation Optimizers that will be used in this thesis were also discussed.  Then, the 
incorporation of sell-up in PODS was covered, as well as covering two sell-up estimators: 
Inverse Cumulative and Forecast Prediction.  The implementation of both Hybrid 
Forecasting and Fare Adjustment in PODS was discussed, and finally, the Network S1 
and S4 simulation environments were described.  

The following chapter will provide results of using HF alone and in combination with FA 
in both network environments to assess their impacts.  A new FA implementation will be 
introduced and tested to evaluate the claim that it reduces the need for scaling to generate 
the FA FRAT5. 
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CHAPTER 5 
PODS SIMULATION RESULTS  

This chapter presents the results of using Hybrid Forecasting (HF) with Fare Adjustment 
(FA) in a competitive network environment of four airlines.  The first half of the chapter 
is dedicated to Network S1, and the second half contains the same simulation runs in the 
less restricted Network S4 as well as additional runs when AL2 and AL4 also employ HF 
and FA.  Section 5.1.1 illustrates the revenue gains by incorporating HF alone, and 
section 5.1.2 discusses the additional gains FA can generate when paired with HF.  In 
section 5.1.3, an alternative FA formulation is described that was developed for an airline 
which does not scale its FA.  The two different network sections (5.1 and 5.2) will 
conclude with a comparison of four seat allocation optimizers with FA – EMSRb, 
DAVN, HBP, and ProBP66.    

In order for revenue changes to be accurately attributed to a certain RM technique, all 
other variables in the simulation must remain constant.  AL1 (MSP) uses both EMSRb 
and DAVN seat allocation optimizers to test HF and FA in these simulation runs, while 
the other three airlines will maintain the same RM systems: AL2 with DAVN (standard 
forecasting), AL3 with AT90, and AL4 with DAVN (standard forecasting).  Only in 
section 5.2.2.1.a and 5.2.2.1.b will AL2 and AL4 be given more advanced RM techniques 
to test the effect on AL1 with HF and FA.    

5.1 Network S1  

In this section, the effect of HF alone on revenue is examined, as well as the revenue 
change from HF alone with the addition of FA to HF in Network S1.  HF and FA will be 
tested with the standard Demand Multiplier of 1.00.    

In order for different RM techniques to be evaluated against one another easily, they need 
to be compared to a baseline simulation.  Since leg-based forecasting is still prevalent in 
the airline industry, the baseline simulation run has AL1 using EMSRb with leg-based 
forecasting (all other airlines using RM methods as described above).  Figure 5-1 shows 
the revenue, load factor and yield of each airline under this “base case” environment.  
Because of its network and more advanced RM system, AL2 has a slight edge in revenue 
over AL1.  AL3’s lack of a large network presence and advanced RM system is evident 
in its low revenue and yield numbers.  
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Figure 5-1: Results of Base Case in Network S1  

In order to fully ascertain what revenue gains are attributable to Hybrid Forecasting and 
Fare Adjustment, revenue gains from incorporating path-based forecasting must first be 
found.  Since the HF and FA results in this chapter will be shown while using EMSRb 
and DAVN, the incremental revenue gains from the base case of incorporating path 
forecasting with EMSRb and the DAVN optimizer are necessary.    

1.070%

0.288%

-0.310%

0.105%

-0.4%

-0.2%

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

%
 C

h
n

g
 C

o
m

p
ar

ed
 t

o
 E

b
 le

g
 (

B
A

S
E

)

AL1 AL2 AL3 AL4

LF

Yield ($/RPM)

84.2%

0.146

91.5% 87.7% 90.9%

0.129 0.122 0.123

 

Figure 5-2: Revenue Change with AL1 EMSRb with Path Forecasting   
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The change from leg to path-based forecasting for AL1 improved its revenue over a 
percent from the base case (Figure 5-2).  This is accomplished through the protection of 
more seats for late arriving, higher paying passengers, thus the increase in yield and the 
decrease in load factor.  Although the other three airlines kept the same RM system, AL2 
and AL4 benefited from AL1’s increased aggressiveness by capturing spilled passengers 
from AL1 and increasing their load factors.  AL3, with its simplistic Adaptive Threshold 
RM system, had a revenue loss of 0.31% from the base case.  
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Figure 5-3: Revenue Change with AL1 DAVN  

Figure 5-3 illustrates the large revenue gains that can be achieved when switching from a 
Fare Class Yield Management (section 4.1.2.3.c) optimizer to an O-D optimizer (section 
4.1.2.3.d).  AL1 sees a revenue jump of slightly less than 2% while the other three 
airlines lose revenue relative to the baseline simulation.  DAVN allows AL1 to increase 
its load factor by 2.9% and maintain a very similar yield.  This load factor increase comes 
at the expense of the other three airlines, which all see decreased load factors and almost 
no increase in yield to offset the lower passenger numbers.    

5.1.1 Hybrid Forecasting Alone  

Now that the revenue gains of optimizers using path-based forecasting have been 
presented, Hybrid Forecasting can be added to AL1.  Recall that HF seeks to classify 
demand as either price- or product-oriented and thus force the price-oriented demand to 
sell-up to a higher class than they would have originally booked by closing down lower 
fare classes sooner.  
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Figure 5-4: Revenue Change of AL1 with HF  

As Figure 5-4 depicts, AL1 greatly benefits by the incorporation of HF into its RM 
system.  On top of the revenue gains of path forecasting, HF generates additional 1.1%-
1.4% gains for EMSRb and 1.5%-1.6% gains for DAVN, depending on the sell-up 
estimator used.  The DAVN O-D optimizer with HF extends AL1’s revenue to almost 
3.5% above the base case, which is a very substantial increase for the airline industry 
which operates under small profit margins.  The two sell-up estimators - Inverse 
Cumulative (IC) and Forecast Prediction (FP) – give relatively similar results when used 
with HF.  A recurring theme in this thesis is first presented here, namely that one 
estimator is not clearly more effective than the other and results are mixed depending on 
the other RM techniques being utilized by the airline.  
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Figure 5-5: Yield and Load Factor with HF Compared to Base Case  

With HF forcing more of the price-oriented demand to sell-up, yields for both EMSRb 
and DAVN increase while load factors decrease slightly.  Although HF makes the RM 
system more aggressive in terms of closing down lower classes, DAVN still maintains a 
very high average network load factor of just below 89%.    

5.1.2 Hybrid Forecasting with Fare Adjustment  

In the previous section, DAVN was managing the two fare structures in the network as a 
coupled structure without the ability for more independent control.  This section 
discusses the additional benefit of FA and the de-coupling of the fare structures.  EMSRb 
and DAVN are evaluated separately as FA was originally developed for use with DAVN 
and its virtual buckets.  The simulation runs with Fare Adjustment were conducted at four 
scaling levels: 1.0 (no scaling of FA), 0.75, 0.50, and 0.25 (0.25 being the least 
aggressive, section 4.3.2.2.).  

5.1.2.1 EMSRb Path Forecasting  

Although FA was developed for implementation with DAVN, it can also be applied to 
EMSRb when using path-based forecasting.  These simulations of FA with EMSRb serve 
two purposes: first, since many airlines use EMSRb as their Seat Allocation Optimizer, 
this shows the revenue impacts FA would have on these airlines.  Second, it is a way of 
comparing the intended combination of DAVN with FA to another Seat Allocation 
Optimizer for which FA was not explicitly designed.    
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Figure 5-6: Revenue Change of AL1 EMSRb Path Forecasting with HF and 
FA  

The additional benefit of FA added to HF with EMSRb is very small if positive at all, as 
Figure 5-6 depicts.  The IC estimator performs markedly better than FP at all scaling 
factors for FA, as opposed to HF alone, where the FP estimator and EMSRb does slightly 
better than IC.  At the lowest FA scaling factors with IC, incremental revenue gains over 
HF alone are seen, but only on the order of 0.1%-0.2%, whereas the incremental gains of 
adding HF to an optimizer was above 1% (Figure 5-4).  Therefore, in the case of an 
airline using EMSRb (in a network such as Network S1), the largest jump in revenue will 
be seen with the adoption of HF, and FA will only give positive results if both an 
accurate sell-up estimator and FA scaling factor are utilized.  

The most interesting observation from Figure 5-6 is the general pattern of revenue, 
namely that as the FA scaling factors get less aggressive, the revenues increase.  This 
pattern is a product of the fare restrictions in the fare structures of Network S1.  Recall 
from section 3.2.4.3 the equation:  

kkk fxfxf ')1('

  

where x

 

is the ratio of product demand to total demand for fare class k .  With a higher 
proportion of product-oriented demand, the weight placed on the adjusted fare for the 
price-oriented demand is lower, and therefore the overall adjusted fare for the fare class is 
not lowered significantly from the actual fare price.  In order to have a large percentage 
of product-oriented demand, a fare structure must be able to segment demand relatively 
well.  Network S1 is able to segment demand fairly well and keep business passengers 
from buying down into the lowest classes, although the more restricted fare structure 
obviously performs better at this task than the less restricted, LCC fare structure.  Since 
Network S1 is rather restricted, a larger proportion of demand is classified as product-
oriented.  Therefore, the results from Figure 5-6 support the adjusted fare equation from 
the Marginal Revenue Transformation, specifically that with a more restricted fare 
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structure, less aggressive Fare Adjustment is needed.  This is to be contrasted with the FA 
results from Network S4 where the LCC fare structure is fully unrestricted.  
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Figure 5-7: Yield and Load Factor of AL1 EMSRb Path Forecasting and IC 
Estimator with HF and FA   

Figure 5-7 illustrates the effects of overaggressive FA scaling in a restricted network.  At 
full Fare Adjustment (scaling = 1.0), the load factor for AL1 drops almost 9%.  The yield 
increase to counteract the passenger loss and the resulting revenue loss from HF is only 
0.66%.  As the FA scaling factor becomes less aggressive, the load factor continues to 
rise until it is near its original HF alone level, while the yield correspondingly retreats.  
With the IC estimator as shown in Figure 5-7, the lower FA scaling factors allow enough 
lower class passengers back into the system (as opposed to 1.0) that revenues rise 
slightly, whereas the FP estimator depresses load factors enough that they can never 
regain their pre-FA level (and rising yields are not enough to compensate).  This results 
in the 2% incremental loss of revenue from HF alone seen in Figure 5-6.  The FP 
estimator creates the same pattern as IC and thus was not shown for analysis purposes.     

5.1.2.2 DAVN  

Fare Adjustment was applied to EMSRb with path forecasting in order to show the 
effects of this new RM technique on one of the most widely used Seat Allocation 
Optimizers in the industry.  However, some airlines employ O-D optimizers and more 
specifically, DAVN.  Along with the larger revenue gains generated by the more 
advanced O-D method (Figure 5-4), the incremental revenue gains of FA are also larger 
with DAVN as the fare fed into the LP is adjusted for the risk of buy-down and 
subsequently helps calculate more accurate leg displacement costs. 
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Figure 5-8: Revenue Change of AL1 DAVN with HF and FA  

As in Figure 5-6, the pattern of higher revenues with less aggressive FA scaling holds 
true in Figure 5-8.  However, the incremental revenue gains above HF alone for both IC 
and FP estimators are higher than with EMSRb, as is expected.  EMSRb with the IC 
estimator saw a 0.24% revenue increase over HF alone with FA using a FA scaling factor 
of 0.25, while this same simulation with DAVN generated a 0.47% increase.  The largest 
difference comes with the FP estimator that performed so poorly with EMSRb and FA, 
while with DAVN it achieves a 0.50% incremental revenue increase with a FA scaling 
factor of 0.25.    

Even though Fare Adjustment was designed for DAVN and the incremental revenue 
gains at the best FA scaling factor are 0.50%, the largest revenue jump is again achieved 
through the implementation of Hybrid Forecasting.  Figure 5-4 showed an incremental 
revenue increase for HF of approximately 1.5% over DAVN with standard forecasting, 
while Fare Adjustment generates a third of that increase at 0.50% at the best FA scaling 
factor.  This is very important as airlines incorporating Fare Adjustment may not know 
how aggressive to be in order to maximize revenues as is evident with simulation 
analysis.  
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Figure 5-9: Yield and Load Factor of AL1 DAVN and IC Estimator with HF 
and FA   

As in EMSRb, the introduction of full Fare Adjustment precipitates a large drop in the 
airline’s load factor as sell-up is induced through the protection of seats for higher 
booking classes (Figure 5-9).  With the high ratio of product-oriented demand in Network 
S1, less aggressive Fare Adjustment brings the yield back down with an increase in load 
factor and generates the 0.47% incremental revenue increase.  

5.1.3 Alternate Fare Adjustment Formulation  

As the results from section 5.1.2 have shown, incremental revenue gains above HF alone 
can be achieved with Fare Adjustment and the right FA scaling factor.  However, it is still 
unclear as to how an airline can calculate or estimate the correct FA scaling factor for 
their respective network in order to maximize revenue.  Therefore, an airline may still 
want to implement Fare Adjustment to combat buy-down while not assuming a FA 
scaling factor for their network (i.e. using the most aggressive FA scaling factor of 1.0).  
This alternate FA formulation was developed by Hopperstad76 to try and generate higher 
revenues when the airline is not scaling its Fare Adjustment downward.  

In the original Fare Adjustment formulation and the one used in all the FA simulation 
runs up to this point, the final adjusted fare was calculated using the price- and product-
oriented demand weighted average of the adjusted fare for the price-oriented demand and 

                                                

   

76 Hopperstad, C.. (2008). “Modeling/Programming Update.” PODS Consortium Meeting, Los Angeles, 
CA.  
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the full fare for the product-oriented demand.  To make this more evident, recall the final 
adjusted fare equation from section 3.2.4.3:  

kkk fxfxf ')1('

  
This can be rewritten as:  

prcprd

fprcfprd
f kk

k

'''   

where: prd is product-oriented demand;  
prc is price-oriented demand;  

kf  is the full fare;  
'

kf is the price-oriented adjusted fare;  
''

kf is the final adjusted fare;  

In the alternative FA formulation, the price- and product-oriented weights are still used, 
but instead of appearing in the final adjusted fare equation, they are used to calculate the 
weighted sell-up to a class.  

prdprc

psupprc
psup k'

k

  

This weighted sell-up is then run through the PODS conversions in order to incorporate 
the user-inputted FA scaling factor (for details see Kayser77), and finally used directly to 
calculate the final adjusted fare.  

'
1

'
1

'
1

'
''

kk

kkkk
k

psuppsup

fpsupfpsup
f  

where: '
kpsup  is the weighted average sell-up to class k ;  
'

1kpsup  is the weighted average sell-up to class 1k ;  

kf  is the full fare for class k ;  

1kf  is the full fare for class 1k ;  
''

kf is the final adjusted fare;  

                                                

   

77 Kayser, M.R. (2008). “Alternative Approach to Hybrid Fare Adjustment.” PODS Consortium Meeting, 
Los Angeles, CA. 
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This new methodology is tested under the conditions for which it was developed, Fare 
Adjustment with no scaling (1.0).  
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Figure 5-10: Revenue Comparisons of Original FA to Alternative FA 
Formulation at FA Scaling Factor of 1.0 in Network S1  

As Figure 5-10 depicts, the effectiveness of the alternative FA formulation is dependent 
on the sell-up estimator chosen.  The IC estimator performs better with the original 
formulation, while the FP estimator generates higher revenues when combined with the 
alternate FA methodology.  In fact, the alternative FA method with EMSRb and no 
scaling gives lower revenues with both estimators than even the simple, EMSRb leg 
forecasting base case.    

However, the combination of the alternate formulation with the FP estimator generates 
higher revenues than the original FA.  The DAVN simulation shows over a 1.5% 
incremental revenue increase over the original FA method.  If an airline which was 
already using the FP sell-up estimator with HF and wanted to add Fare Adjustment 
without having to scale, the demand-weighted sell-up FA formulation would generate 
higher revenues in a network similar to Network S1.  

5.1.4 Summary of Best Cases in Network S1  

Now that the incremental revenue gains of both Hybrid Forecasting and Fare Adjustment 
have been presented, this is a good point to step back and compare the best cases for each 
Seat Allocation Optimizer side-by-side.  Heuristic Bid-Price (HBP) and Probabilistic 
Bid-Price (PBP) are also presented alongside EMSRb and DAVN.  The analysis for these 
two optimizers was left out of this thesis because of their less widespread usage 
compared to EMSRb and DAVN in the airline industry.  Figure 5-11 shows the total 
revenue gains over the base case broken down by Seat Allocation Optimizer, Hybrid 
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Forecasting and IC Estimator, and Fare Adjustment.  Note that the HBP column does not 
include Fare Adjustment since this is a “best case” graph and the incorporation of FA 
with HBP only lowers revenue from HF alone.  Also, since the greater number of “best 
case” simulations involved the IC estimator (including PBP), the results with the FP 
estimator were omitted.  
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Figure 5-11: Revenue Comparison of Best Cases by Seat Allocation 
Optimizer in Network S1  

Both of the O-D Seat Allocation Optimizers, DAVN and PBP, see the largest revenue 
gains from Fare Adjustment as well as from the optimizers themselves (Figure 5-11).  
The combination of HF and FA with DAVN gives a total revenue increase of 
approximately 4% over the base case, while with EMSRb the increase is almost 2.5%.  
Although Network S1 has a moderate ability to segment demand and thus reduced need 
for RM techniques focused on price-oriented demand, revenue gains of approximately 
2.5% and 4% for EMSRb and DAVN, respectively, are quite large and attest to the 
effectiveness of both the forecasting of demand and the ability to manage the different 
fare structures in the network more independently. 
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Figure 5-12: Yield, Load Factor, and Fare Class Mix of Best Cases in 
Network S1  

Figure 5-12 presents some counterintuitive results, namely that Fare Adjustment with 
DAVN, the Seat Allocation Optimizer FA was developed for use with, has the highest 
load factor even though FA is supposed to shut down lower classes earlier in order to 
force sell-up.  Although it is no surprise that DAVN has the highest number of fare class 
6 passengers, it also has a high number of fare class 1 and 2 passengers as well.  The 
lower numbers of bookings come in the middle 3 and 4 fare classes.    

The higher revenues coinciding with the higher load factors can partly be attributed to the 
design of Network S1.  High willingness-to-pay, late arriving business passengers will 
usually book in the higher fare classes because of the fare class restrictions in the 
network.  If the product-oriented demand forecast can be relatively accurate, the number 
of bookings in the lower classes by price-oriented passengers should be able to be more 
optimally managed, which may be a reason for the higher load factors and higher 
revenues for the O-D Seat Allocation Optimizers.   

Now that HF and FA have been analyzed in the more restrictive Network S1, they will 
now be implemented in a network where over half of the markets have no restrictions at 
all and passengers book solely on price.   
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5.2 Network S4  

Now that the results have been presented for a relatively realistic airline network, HF and 
FA will be tested in an extreme case for a multiple fare structure environment.  The fare 
structure for markets without an LCC presence remains the same as Network S1, but the  
markets with LCC competition are completely unrestricted with neither advance purchase 
requirements nor fare class restrictions.  This network was designed to test the 
effectiveness of RM methods designed to better estimate willingness-to-pay and thus 
force sell-up, since over half of the markets are unrestricted and fully dependent on the 
RM system to force bookings in the higher classes.  This section contains the same 
simulation runs as section 5.1, as well as analysis at lower Demand Multipliers (DM) to 
simulate a weaker demand base and the effects of other airlines using more advanced RM 
methods.     

As in Network S1, the base case for Network S4 is EMSRb leg forecasting for AL1, 
DAVN with standard forecasting for AL2, AT90 for AL3, and DAVN with standard 
forecasting for AL4.    
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Figure 5-13: Base Case Results in Network S4  

Load Factor 
Yield ($/RPM) 

AL1 AL2 AL3 AL4 

DM=1.0 91.6% 
0.103 

93.6% 
0.106 

89.1% 
0.099 

93.7% 
0.091 

DM=0.9 86.5% 
0.103 

88.4% 
0.102 

85.7% 
0.089 

90.1% 
0.087 

DM=0.8 80.5% 
0.103 

80.7% 
0.100 

80.4% 
0.081 

83.6% 
0.086 

Table 5-1: Base Case Load Factor and Yield in Network S4 



    

84  

Figure 5-13 and Table 5-1 show the relevant metrics for the base case simulation run at 
three different demand levels.  The difference in the demand segmentation ability of the 
two networks is evident in the revenue comparison of Figure 5-1 and Figure 5-13.  In 
Network S1, AL1 has total revenue of just under $2M, while in Network S4 with a fully 
unrestricted fare structure, its revenue drops to approximately $1.5M.  This revenue 
decrease occurs for each airline as they all have markets where they are competing with 
AL3, the simulated LCC.  

Also, as expected, revenues for each airline decrease as the underlying demand is 
weakened.  The proportion of total network revenue for each airline remains the same as 
demand is lowered, but total revenues are decreased.  Lower demand environments are 
simulated in Network S4 to analyze the revenue improvements of incorporating the 
higher fare class seat-protecting HF and FA into weaker demand situations.  For the rest 
of the analysis in Network S4, the percent revenue change for each DM is compared to its 
corresponding DM base case.  For example, the light yellow columns in Figure 5-14 
(DM=0.8) are percent revenue changes from the DM=0.8 base case.   
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Figure 5-14: Revenue Change with AL1 EMSRb with Path Forecasting   

Load Factor 
Yield ($/RPM) 

AL1 AL2 AL3 AL4 

DM=1.0 90.6% 
0.110 

94.1% 
0.104 

88.9% 
0.098 

94.0% 
0.091 

DM=0.9 86.0% 
0.106 

88.7% 
0.101 

85.6% 
0.088 

90.2% 
0.087 

DM=0.8 80.3% 
0.104 

80.8% 
0.100 

80.4% 
0.081 

83.7% 
0.085 

Table 5-2: AL1 EMSRb with Path Forecasting Load Factor and Yield  
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The addition of path forecasting to EMSRb gives a large revenue increase for AL1, 
almost 6% above leg forecasting.  This revenue jump comes at the expense of the other 
three airlines in the network, which all lose revenue compared to the base case.  
However, in lower demand environments the effect of path forecasting on AL1 is much 
less pronounced.  In fact, the percent revenue increase is less than 1% at a Demand 
Multiplier of 0.8.  This is intuitive since with less demand, the airline will continue to 
leave its lower classes open in order to gain more bookings.  The addition of path 
forecasting does not change the RM strategy much at all as forcing sell-up and more 
accurate forecasts do not play a large role when more bookings are needed at any fare 
class.  

The dwindling effect of path forecasting with lower demands can be seen by comparing 
Table 5-1 and Table 5-2.  At DM=1.0, AL1 sees a 1% drop in load factor and a $0.007 
increase in yield due to the effects of EMSRb with path forecasting.  However, at 
DM=0.8, the load factor and yield are almost identical because the demand needed to 
make path forecasting effective has not materialized.  In order to generate the highest 
number of bookings, AL1 with both leg and path forecasting leave the lower classes open 
and consequently, a large proportion of the bookings are in fare class 6, the lowest fare 
class.  
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Figure 5-15: Revenue Change with AL1 DAVN          
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Load Factor 
Yield ($/RPM) 

AL1 AL2 AL3 AL4 

DM=1.0 92.9% 
0.110 

92.7% 
0.104 

88.2% 
0.095 

93.3% 
0.091 

DM=0.9 88.0% 
0.107 

87.6% 
0.101 

84.6% 
0.087 

89.5% 
0.087 

DM=0.8 81.3% 
0.105 

80.5% 
0.100 

79.9% 
0.080 

83.1% 
0.086 

Table 5-3: AL1 DAVN Load Factor and Yield   

With the DAVN Seat Allocation Optimizer, AL1’s revenue increases over 8% from the 
base case by raising both the load factor and yield (Figure 5-15 and Table 5-3).  The 
added benefit of an O-D optimizer over a FCYM method is evident when comparing load 
factors and yields: in Table 5-2, EMSRb with path forecasting increased revenues by 
lowering the load factor but increasing yield.  DAVN, on the other hand, is able to 
generate higher revenues by increasing both the load factor and yield at the same time.     

Although all three airlines in the network are adversely affected by AL1’s RM 
improvement, AL3 is the most impacted with a 4.8% decrease in revenue.  AL1 not only 
takes passengers from the other three airlines, but they also take the highest paying 
passengers as well (lower load factors and yields for other three airlines).  As before, the 
revenue impact of the increased sophistication of the RM system is diminished in lower 
demand environments.  AL1 DAVN at DM=0.8 only achieves a 2.5% increase over the 
base case while the other three airlines’ losses are reduced as well.  

5.2.1 Hybrid Forecasting Alone  

In this section, Hybrid Forecasting is analyzed in Network S4 with both sell-up 
estimators.  In addition, AL2 and AL4 (both using DAVN) are given Hybrid Forecasting 
with the IC estimator to simulate the effects on AL1 (with HF) of other airlines in the 
network using sophisticated RM techniques.  Analysis at DM=1.0 is conducted for both 
the IC and FP estimators, while the lower demand environment simulations are only 
performed with the IC estimator as revenues with IC are higher for both EMSRb and 
DAVN at DM=1.0.  
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Figure 5-16: Revenue Change of AL1 with HF at DM=1.0 

$0.126

$0.128

$0.130

$0.132

$0.134

$0.136

$0.138

Y
ie

ld

80%

82%

84%

86%

88%

90%

92%

L
F

Yield LF

ICIC FPFP

AL1 EMSRb AL1 DAVN

 

Figure 5-17: Yield and Load Factor of AL1 with HF at DM=1.0  

Figures 5-16 and 5-17 give the relevant metrics for the addition of HF to EMSRb and 
DAVN in Network S4.  As compared to Figures 5-4 and 5-5, it is evident that HF 
provides a much greater incremental benefit in Network S4 when forcing sell-up is even 
more important.  The IC estimator outperforms FP for both optimizers, and the 
incremental revenue gains of adding HF are all above 12%.  These extremely large gains 
(as compared to Network S1) are due to the fully unrestricted LCC fare structure and the 
potential revenue increase available with a RM system that can accurately forecast 
demand and willingness-to-pay in order to force passengers to book in the higher booking 
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classes.  As in Network S1, DAVN has higher revenues than EMSRb with higher load 
factors and lower yields, although load factors decrease and yields increase for DAVN 
with the implementation of HF.  

Although HF is obviously beneficial with a high level of demand in the network, its 
benefits may be minimized with weaker demand just as the Seat Allocation Optimizers’ 
benefits were decreased in Figures 5-14 and 5-15.    
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Figure 5-18: Revenue Change of AL1 with HF and IC Estimator at DM=0.9 
and DM=0.8  

In lower demand environments, the revenue impact of HF is still large, although not quite 
as great as with DM=1.0.  When the Hybrid Forecaster analyzes bookings on previous 
departures, fewer higher class bookings will be seen and thus a lower forecast for those 
fare classes.  Although the airline wants to have passengers sell-up, the revenue gained 
from the passengers who will book in higher classes is far outweighed by the revenue lost 
from passengers who will book elsewhere (or not travel at all) when lower fares are not 
available.   
   

5.2.1.1 AL2 & AL4 Hybrid Forecasting (IC)  

Up to this point, AL2 and AL4 have used an O-D Seat Allocation Optimizer with 
standard forecasting.  Although DAVN performs well with standard forecasting (as 
evidenced by Figure 5-15), the addition of HF can give substantial revenue benefits 
(Figure 5-16).  In today’s low fare environment, airlines are upgrading their RM systems 
in order to extract higher revenues from passengers while offering the same travel 
product.  Therefore, the current Network S4 simulation environment needs to be updated 
to reflect the increased sophistication of competing airlines.  This is done by allowing 
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AL2 & AL4 to utilize HF with the DAVN optimizer when AL1 implements HF.  Since 
the IC estimator has been seen to generate the highest revenues in Network S4, all 
airlines with HF use the IC estimator, and the simulations are run with DM=1.0.    
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Figure 5-19: Revenue Change with AL2 & AL4 HF at DM=1.0 (AL1 
EMSRb)  

Load Factor 
Yield ($/RPM) 

AL1 AL2 AL3 AL4 

Only AL1 HF 82.5% 
0.137 

96.1% 
0.106 

88.5% 
0.091 

95.6% 
0.092 

3 AL’s HF 83.8% 
0.130 

94.3% 
0.109 

88.5% 
0.089 

93.7% 
0.096 

Table 5-4: Load Factor & Yield Comparison with AL2 & AL4 HF at 
DM=1.0 (AL1 EMSRb)  

With AL2 & AL4 becoming more sophisticated and implementing HF, AL1 loses over 
3.5% of its revenue compared to when AL2 & AL4 were only using standard forecasting 
(Figure 5-19).  With the price/product forecasting approach, AL2 & AL4 both see an 
increase in revenue, with AL4 seeing a greater percentage increase as less of its network 
is exposed to either AL1 or AL2.  AL1’s large revenue decrease is largely due to AL2 as 
it serves almost every market as AL1.  AL1’s load factor increases as it captures some 
lower class spill-in passengers (passengers whose first choice was on another airline, but 
the particular fare class in which they would have booked was closed and they then 
booked with AL1) from AL2 & AL4 as they shut down their lower classes sooner, but 
the revenue loss from the lower yield drives down the total revenue (Table 5-4).  As 
shown before, the addition of HF lowers load factors and increases yields as lower 
classes are closed sooner and passengers are forced into higher fare classes.  AL3 is also 
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negatively affected, losing 2.36% of the revenue it previously enjoyed through a slight 
decrease in yield.    

0
200000

400000
600000
800000

1000000
1200000
1400000
1600000
1800000
2000000

Only
AL1 HF

3 AL's
HF

AL1 AL2 AL3 AL4

-5.96% 4.43%

-3.51%

5.19%

 

Figure 5-20: Revenue Change with AL2 & AL4 HF at DM=1.0 (AL1 
DAVN)  

Load Factor 
Yield ($/RPM) 

AL1 AL2 AL3 AL4 

Only AL1 HF 89.7% 
0.128 

94.0% 
0.105 

88.1% 
0.091 

94.4% 
0.091 

3 AL’s HF 90.7% 
0.119 

91.0% 
0.113 

87.9% 
0.088 

92.2% 
0.098 

Table 5-5: Load Factor & Yield Comparison with AL2 & AL4 HF at 
DM=1.0 (AL1 DAVN)  

With AL1 DAVN and AL2 & AL4 instituting HF, the percent revenue drop for AL1 is 
larger than with EMSRb, and likewise the increases for AL2 & AL4 are greater (Figure 
5-20).  This can be explained by the situation before AL2 & AL4 used HF.  When AL1 
used EMSRb, it had the highest revenue out of the four airlines, but it was considerably 
lower than its revenue when using DAVN because of the FCYM optimizer.  With only 
AL1 implementing HF with DAVN, it was able to acquire a larger percentage of the total 
revenue in the network due to its superior forecasting ability and O-D optimizer.  With 
that being the case, AL1 using DAVN and HF had more to lose in the event another 
airline increased its RM sophistication.  In this scenario, both AL2 & AL4 incorporated 
HF at the same time and were able to take back some of the network revenue from AL1.  
Therefore, AL1 drops almost 6% of its revenue from when it was the only airline 
utilizing HF (Table 5-5).  AL2 & AL4 see large increases through better protection for 
higher-paying, late-arriving passengers (higher yields and lower load factors).    
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The results in this section support what one may expect with improved forecasting for 
competing airlines, namely that the airline enjoying the preponderance of revenue will 
lose some of that revenue, while the airlines improving their forecasters will see an 
increase in revenue.    

5.2.2 Hybrid Forecasting with Fare Adjustment  

In Network S1, Fare Adjustment with Hybrid Forecasting led to some incremental 
revenue gains, but on a much smaller order than the gains from the addition of HF.  
However, section 5.2.1 showed extremely large gains with HF implemented in Network 
S4 due to the much lower base case revenues with a fully unrestricted fare structure in the 
network.  Therefore, instituting FA to account for the risk of buy-down and to control the 
very different fare structures more independently may yield higher revenue gains than 
previously seen in Network S1.  

5.2.2.1 EMSRb Path Forecasting  

First, the implementation of FA is analyzed at the standard Demand Multiplier of 1.0 
with both sell-up estimators (IC and FP), then lower demand levels are evaluated with the 
IC estimator only.  
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Figure 5-21: Revenue Change of AL1 EMSRb Path Forecasting with HF 
and FA at DM=1.0  

The same conclusion can be made from Figure 5-21 as was made in Network S1, namely 
that although Fare Adjustment offers some incremental revenue gain, the increase is 
much smaller than the corresponding incremental increase of the addition of Hybrid 
Forecasting.  Only at a scaling factor of 0.25 using the FP estimator does the incremental 
benefit eclipse 1%, while the HF gains were all above 12%.  However, this is not to say 
FA offers inconsequential revenue improvement, as tenths of a percent equates to 
millions of dollars in an industry that deals with yearly revenue in the billions.    
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With AL1 EMSRb in Network S4, FP actually outperforms FP for the less aggressive FA 
scaling factors, with 0.25 giving both the highest incremental revenue gain and total 
revenue of any FA configuration.  Also, the revenue pattern exhibited by the two 
estimators is different, which has not been the case before.  One would expect Network 
S4 to have a higher proportion of passengers classified as price-oriented as all bookings 
in the LCC fare structure will be in the lowest available class.  This will give a greater 
weight to the adjusted fare for the price-oriented demand in the equation from section 
3.2.4.3, ultimately leading to a lower total adjusted fare and a quicker closing of the fare 
class.  The IC estimator reinforces this theory as a more aggressive scaling factor, 0.50, 
gives the highest incremental revenue increase.  However, with FP, the least aggressive 
scaling factor continues to perform the best, with a 1.07% revenue increase.  This 
discrepancy is more attributable to the estimators themselves and less to the FA 
methodology.  
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Figure 5-22: Yield and Load Factor of AL1 EMSRb Path Forecasting and IC 
Estimator with HF and FA at DM=1.0  

With the yield and load factor analysis in Figure 5-22, it is easy to determine the reason 
for the higher revenue at 0.50.  As the scaling factor decreases from 1.0 and becomes less 
aggressive, the load factor rises to just below 81% at 0.50.  However, as FA becomes 
even less aggressive, the load factor does not increase but rather retreats slightly, and the 
yield stays virtually unchanged, giving 0.50 a higher revenue than 0.25.  Although the 
highest revenue occurring in a higher scaling factor than 0.25 may be expected, one 
would think that the load factor would continue to increase as the FA becomes less 
aggressive but a certain yield-load factor combination at a higher scaling factor would 
generate higher revenues than at the lowest scaling factor.  Instead, the load factor tails 
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off while yield holds relatively constant, making the revenue difference easily 
identifiable.   
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Figure 5-23: Revenue Change of AL1 with HF, FA and IC Estimator at 
DM=0.9 and DM=0.8  

In lower demand environments, the positive effect of FA is virtually negated (Figure 5-
23).  At DM=0.9, a miniscule 0.02% revenue increase is possible at scaling factor 0.50, 
but with a weaker demand base at DM=0.8, the aggressive FA methodology does not 
increase revenues.  The revenue pattern from Figure 5-21 continues at DM=0.9, albeit 
with very small increases, while it breaks down at DM=0.8 and any implementation of 
FA leads to decreased revenues.  It is evident that as the scaling factor converges on 0.0 
(HF), revenue will continue to increase until it reaches the HF only level.    

5.2.2.1.a AL1 HF (IC) & FA (0.50), AL2 & AL4 HF (IC) and FA (0.25)  

This section, combined with section 5.2.1.2.a, presents the impacts on AL1 when other 
competing airlines use more sophisticated RM systems.  In these analyses, AL2 & AL4 
are given Hybrid Forecasting and Fare Adjustment to match what AL1 is utilizing.  It is 
also assumed to be the worst case for AL1 in terms of the other airlines’ improvements, 
namely that since they both are using the DAVN Seat Allocation Optimizer, they 
implement the best FA scaling factor for use with DAVN (justification for 0.25 scaling 
factor presented in section 5.2.1.2).  Since all three airlines use the IC estimator, AL1 
uses a 0.50 scaling factor (per results in Figure 5-21).  
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Figure 5-24: Revenue Change with AL2 & AL4 HF and FA at DM=1.0  

Load Factor 
Yield ($/RPM) 

AL1 AL2 AL3 AL4 

Only AL1 HF & 
FA 

80.7% 
0.141 

96.1% 
0.106 

88.7% 
0.093 

95.5% 
0.093 

3 AL’s HF & 
FA 

82.0% 
0.133 

94.2% 
0.110 

88.7% 
0.090 

92.3% 
0.100 

Table 5-6: Load Factor & Yield Comparison with AL2 & AL4 HF and FA at 
DM=1.0  

With the addition of HF and FA, AL2 & AL4 protect more seats for higher fare classes 
and see large revenue gains in the process (Figure 5-25 and Table 5-6).  When Figure 5-
24 is compared to Figure 5-19, it is evident that most of the revenue gained by AL2 & 
AL4 is through the incorporation of HF and not FA.  FA does stretch the revenue 
increase a bit, but most of the damage done to AL1 is by the better forecasting 
methodology.  AL3 again is negatively affected as its load factor threshold method is 
outperformed by more advanced RM techniques.           
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5.2.2.2 DAVN  
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Figure 5-25: Revenue Change of AL1 DAVN with HF and FA at DM=1.0  

In Figure 5-25, a new revenue pattern is shown for both estimators when AL1 uses 
DAVN.  As FA becomes less aggressive, revenues decrease through 0.50, and then a 
large jump is seen at 0.25 that eclipses the HF only revenue and the most aggressive FA 
revenue.  This signifies that the combination of DAVN and HF has already taken into 
account much of the sell-up behavior of the passengers and has already made those 
revenue contributions.  Although the most aggressive FA does achieve higher revenues 
with IC, the large jump at 0.25 indicates a slightly more aggressive approach combined 
with a de-coupling of the fare structures is a more advantageous approach for the airline.  
Using an O-D Seat Allocation Optimizer with Hybrid Forecasting and an aggressive Fare 
Adjustment runs the risk of overprotecting seats for higher fare classes and driving the 
load factor down to levels that higher yields cannot counterbalance.   
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Figure 5-26: Yield and Load Factor of AL1 DAVN and IC Estimator with 
HF and FA at DM=1.0  

As opposed to Figure 5-22, Figure 5-26 is more of the Yield-Load Factor graph that is 
expected when decreasing the aggressiveness of FA, as the load factor continues to 
increase and yield continues to decrease.  It also provides great insight into the large 
revenue jump at 0.25.  Starting at scaling factor 1.0, the increase in load factor is fairly 
steady as the scaling factor decreases, with a 1.5% increase between 0.50 and 0.25.  
However, they decrease in yield isn’t as uniform, as the difference between 0.50 and 0.25 
is only 0.0007.  The revenue jump is a result of this disparity, as the load factor has a 
large increase while yield stays relatively the same.    
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Figure 5-27: Revenue Change of AL1 with HF, FA and IC Estimator at 
DM=0.9 and DM=0.8  
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The effect of Fare Adjustment in a lower demand environment is more negatively 
pronounced in Network S4, as no level of FA aggressiveness produces a better result than 
HF alone.  Weaker demand becomes more of an issue in Network S4 since the LCC 
markets are unrestricted.  Previously in the less-restricted LCC markets in Network S1, 
even when the airline would have to leave the lower classes open to gain bookings, a 
certain number of passengers would book in the higher fare classes due to some demand 
segmentation ability.  In Network S4, that ability no longer exists, but trying to shut down 
classes and force sell-up with a weak underlying demand base will only serve to drive 
passengers to other airlines and lower revenue.    

5.2.2.2.a AL1, AL2, and AL4 HF (IC) and FA (0.25)  

Since AL1 uses DAVN, all three airlines modeled as Network Legacy Carriers will be 
identical in their RM systems, utilizing Hybrid Forecasting with the IC estimator and 
Fare Adjustment with a scaling factor of 0.25.  These simulation results show the effect 
on an advanced O-D RM system of competitors’ upgrading to a similarly advanced 
system.  
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Figure 5-28: Revenue Change with AL2 & AL4 HF and FA at DM=1.0        
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Load Factor 
Yield ($/RPM) 

AL1 AL2 AL3 AL4 

Only AL1 HF & 
FA 

88.1% 
0.132 

94.2% 
0.105 

88.4% 
0.092 

94.5% 
0.092 

3 AL’s HF & 
FA 

89.9% 
0.121 

90.3% 
0.114 

88.1% 
0.089 

91.3% 
0.100 

Table 5-7: Load Factor & Yield Comparison with AL2 & AL4 HF and FA at 
DM=1.0  

As when AL1 used EMSRb and the competition upgraded their RM systems (Figure 5-
24), AL1 sees a large drop in revenue even though it is using the exact same RM 
techniques as its major competition (Figure 5-28).  Previously, it was able to extract a 
high yield by protecting seats for late-arriving passengers and subsequently secure a high 
revenue.  However, the main three airlines are all protecting seats and thus their yields 
converge toward one another (Table 5-7).  AL2 generates the highest revenue out of the 
four airlines, overtaking AL1 even with a slightly smaller network.  The more central 
location of the ORD hub is one contributor to this revenue advantage.      

5.2.3 Alternate Fare Adjustment Formulation  

In Network S1, the alternate FA formulation for use without scaling was found to be 
effective for the FP estimator and not IC (Figure 5-10).  With an entire fare structure 
unrestricted, the weighted sell-up rates should stay reasonably close to the observed sell-
up rates as a large proportion of the demand will be classified as price-oriented.    

For the analysis of the alternate FA approach, only full-up FA (scaling of 1.0) and the 
optimal scaling for the given Seat Allocation Optimizer found in this section were run in 
PODS. 
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Figure 5-29: Revenue Comparisons of Original FA to Alternative FA 
Formulation in Network S4 
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The results of the alternative method in Network S4 are consistent across sell-up 
estimators.  With AL1 EMSRb, the alternative method generates higher revenues when 
there is no FA scaling occurring, while with DAVN and no scaling, AL1 is better off 
continuing with the original FA methodology.  Figure 5-29 supports the ongoing 
conclusion that an arbitrary scaling factor can increase revenue in all but one case, where 
a scaling factor of 0.50 with EMSRb and the IC estimator on the alternative FA approach 
actually lowers AL1’s revenue.  In all other cases, however, no matter if the alternative 
methodology outperforms the weighted adjusted fare approach without scaling or not, 
higher revenues can be found by scaling the FA approach in use.    

5.2.4 Summary of Best Cases in Network S4  

In order to get a “big picture” look at the results of different optimizers and RM 
configurations in Network S4, it is necessary to put them in a side-by-side comparison.  
As before, these simulation runs return AL2 & AL4 to using DAVN with standard 
forecasting, as well as the Demand Multiplier to 1.0.  HBP and PBP are also added in 
order for two other Seat Allocation Optimizers to be compared against EMSRb and 
DAVN.  The IC sell-up estimator is used for AL1.    
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Figure 5-30: Revenue Comparison of Best Cases by Seat Allocation 
Optimizer in Network S4  

As seen earlier and again in Figure 5-30 are the large revenue gains generated by 
incorporating Hybrid Forecasting.  The unrestricted LCC fare structure gives back a lot of 
revenue from the Network S1 environment, and although the more advanced Seat 
Allocation Optimizers retrieve over 7% of those losses, HF is where most of the revenue 
is recouped.  Fare Adjustment, especially with the O-D optimizers DAVN and PBP, 
offers substantial benefit as well with the ability to more independently manage the 
moderately restrictive fare structure and the completely unrestricted fare structure.  Even 
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more so than in Network S1, the optimal strategy for one fare structure may lead to large 
revenue drops in markets governed by the other fare structure.    

An interesting note is the difference in the FA scaling factors for the two O-D optimizers.  
Originally, one would expect a more aggressive scaling factor to perform better in 
Network S4, but throughout the analysis that proved to not be the case, especially with 
DAVN.  However, PBP achieves higher revenues than DAVN with the full-up, most 
aggressive Fare Adjustment.  This is just one of the number of examples which show that 
not only does the aggressiveness of the FA depend on the fare structures in which it is 
operating, but also on the other RM techniques being employed by the airline.  
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Figure 5-31: Yield, Load Factor, and Fare Class Mix of Best Cases in 
Network S4  

As in Network S1, DAVN generates a high revenue number while having the highest 
load factor and by far the greatest number of fare class 6 bookings (Figure 5-31).  The 
other O-D optimizer, PBP, achieves an even higher level of revenue, but through a 
different strategy, by protecting seats for the highest booking class and thereby 
decreasing the load factor but increasing the yield.     

Figure 5-31 can be compared to the metrics presented in Figure 5-12 to evaluate the 
effect of the unrestricted fare structure.  In Figure 5-12, a much larger number of 
bookings occurred in fare class 1 and 3, while here in Figure 5-31, the first five fare 
classes are relatively similar in terms of bookings, and a large spike is seen in the lowest 
booking class.  Even though HF and FA are implemented in AL1’s RM system, the LCC 
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fare structure makes it much more difficult to force higher-class bookings, especially in 
an environment where an LCC is competing on some markets.     

5.3 Chapter Summary  

In this chapter, the results of simulations focusing on Hybrid Forecasting and Fare 
Adjustment were presented.  These two RM techniques were tested in two different, 4-
airline competitive networks, with the restrictions on the markets where an LCC is 
present being changed.  HF and FA were utilized with the EMSRb and DAVN, although 
final comparisons were conducted with HBP and PBP as well.  

In section 5.1, the simulations were run in Network S1, the more realistic of the two 
networks tested, with the results being summarized in Tables 5-8 and 5-9.  With both HF 
and FA, EMSRb achieved a revenue gain of slightly less than 2.5% over the base case, 
while DAVN had an increase of over 4%.   

Revenue % Chng 
from Base 

% Incremental Chng 
from Previous 

Leg Forecasting (Base 
Case) 

1940182 --- --- 

Path Forecasting 1960941 1.07% 1.07% 
Hybrid Forecasting (IC) 1982254 2.17% 1.10% 

HF (IC) with Fare 
Adjustment (0.25) 

1986973 2.41% 0.24% 

Table 5-8: AL1 EMSRb Revenue Summary in Network S1 at DM=1.0   

Revenue % Chng 
from Base 

% Incremental Chng 
from Previous 

Standard Forecasting 1977192 1.91% 1.91% 
Hybrid Forecasting (IC) 2007906 3.49% 1.58% 

HF (IC) with Fare 
Adjustment (0.25) 

2017429 3.98% 0.49% 

Table 5-9: AL1 DAVN Revenue Summary in Network S1 at DM=1.0  

To test both HF and FA in a more extreme situation, they were given to AL1 in Network 
S4 with a fully unrestricted LCC fare structure.  This is not an altogether realistic 
environment, but it is useful in evaluating these techniques’ ability to account for buy-
down and force sell-up in order to maximize revenues.  Although the starting base case 
revenue was lower, HF and FA performed very well as HF provided incremental gains of 
over 12% and FA of close to 1%.  The results are summarized in Tables 5-10 and 5-11.      
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Revenue % Chng 
from Base 

% Incremental Chng 
from Previous 

Leg Forecasting (Base 
Case) 

1510911 --- --- 

Path Forecasting 1597568 5.74% 5.74% 
Hybrid Forecasting (IC) 1812834 19.98% 14.25% 

HF (IC) with Fare 
Adjustment (0.50) 

1819419 20.42% 0.44% 

Table 5-10: AL1 EMSRb Revenue Summary in Network S4 at DM=1.0   

Revenue % Chng 
from Base 

% Incremental Chng 
from Previous 

Standard Forecasting 1636821 8.33% 8.33% 
Hybrid Forecasting (IC) 1842041 21.92% 13.58% 

HF (IC) with Fare 
Adjustment (0.25) 

1855173 22.79% 0.87% 

Table 5-11: AL1 DAVN Revenue Summary in Network S4 at DM=1.0  

Also in Network S4, HF and FA were tested at lower demand levels.  Since these 
methods are aggressive in trying to force sell-up, the results presented were as expected, 
namely that as the underlying demand base becomes weaker, the effectiveness of these 
methods decreases.  HF still provided generous revenue improvements (above 3% 
incremental gains), but FA offered little to no revenue increase, and in most cases it 
overprotected for higher fare classes and caused the revenue to drop.    

Although a FA scaling factor was shown to provide higher revenues than the full, no-
scaling FA.  However, some airlines (and certainly Revenue Management divisions) do 
not want to take the risk of assuming a certain scaling factor for their network.  For these 
airlines an alternate FA formulation was tested in order to achieve higher revenues 
without FA scaling than the original implementation.  For the IC estimator, only with 
EMSRb and in the less-restrictive Network S4 does the alternate formulation outperform 
the original (Table 5-12).   

Network S1 Network S4 

 

Original Alternate (% 
Chng) 

Original Alternate (% 
Chng) 

EMSRb with 
HF (IC), FA 

(1.0) 

1957342 1934456  
(-1.76%) 

1804729 1816047 
(0.63%) 

DAVN with 
HF (IC), FA 

(1.0) 

1965306 1962787  
(-0.98%) 

1846155 1835253  
(-0.59%) 

Table 5-12: AL1 Revenue Results with Alternate FA Formulation  
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Finally, simulations were conducted to evaluate the effects that increased sophistication 
of competitors’ RM system had on AL1.  In Network S4, this meant that AL2 and AL4 
would be given HF when AL1 was using HF, and HF and FA along with AL1.  As 
expected, AL2 & AL4 captured back some of the revenue that AL1 was able to generate 
when it was the only airline using these techniques.  AL1’s losses were 3%-6.5% from its 
previous revenue totals.  Therefore, implementing HF and FA still achieves revenue 
gains, but the improvement is smaller when other airlines are using similarly 
sophisticated RM systems. 
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CHAPTER 6 
CONCLUSIONS  

Since many Network Legacy Carriers (NLC) now employ multiple fare structures across 
their networks, this thesis tested the ability of two new Revenue Management techniques, 
Hybrid Forecasting (HF) and Fare Adjustment (FA), to generate higher revenues in these 
multiple fare structure environments.  In the more realistic Network S1, the combination 
of HF and FA achieved revenue increases above a standard leg-based forecasting 
approach of nearly 4% in the best case, while in the “proof-of-concept” Network S4, 
these methods together generated gains of over 20%.    

The beginning of this thesis presented the reader with an overview of airline revenue 
management as well as some of the traditional revenue management models and the need 
for new techniques.  Many of the conventional methods assume that demand for a class is 
independent of demand for any other class.  Although this assumption is almost never 
valid, in the years following deregulation the use of this assumption could be justified 
with the ability to segment demand through advance purchase requirements and booking 
restrictions in the fare structure.  However, the compressed fare ratios and reduction of 
fare product restrictions brought about by the emergence of LCC’s invalidates the 
demand independence assumption.  In fact, traditional RM techniques applied to these 
simplified fare structures cause a spiral down of not only bookings into the lowest class, 
but ultimately revenue as the bookings database records more lower class bookings and 
fewer high fare class seats are protected.  Clearly, there is a need for new RM methods 
for use in this new environment.  

Chapter 3 described two RM techniques designed for use with simplified fare structures.  
Hybrid Forecasting breaks demand into two categories, price- and product-oriented, and 
forecasts demand separately for each group in a fare class.  Fare Adjustment allows an 
airline with multiple fare structures in its network (normally a more-restricted structure 
for markets without an LCC presence and matching the LCC on markets where they both 
compete) to more independently manage the seat inventory between the two fare 
structures.  The objective of this thesis was to evaluate the effectiveness of these two 
methods in a four-airline, asymmetric, competitive network.    

The Passenger Origin-Destination Simulator (PODS) was introduced in Chapter 4, and its 
Passenger Choice Model and Revenue Management System were discussed.  Next the 
seat allocation optimizers (EMSRb, DAVN, AT90) and sell-up estimators (IC, FP) 
employed in the simulation runs were covered. Instead of using user-defined inputs to 
calculate the sell-up probability at different times during the booking process, this thesis 
utilized two sell-up estimators, Inverse Cumulative and Forecast Prediction, to calculate 
the probability of sell-up from the Historical Bookings Database.  This makes the 
analysis more realistic as an actual airline would not assume a sell-up value.  The 
conversion of HF and FA from theory development by Fiig et al. in Chapter 3 to 
implementation in PODS by Hopperstad was also illustrated.  
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The two simulated networks used in this thesis were identical in route structure for each 
airline, with the only difference being the fare structure employed on markets with an 
LCC presence.  Network S1 was a more realistic network as the less-restricted fare 
structure still employed advance purchase requirements along with cancellation and 
refund restrictions.  Network S4 was a “proof of concept” network designed to assess the 
new RM techniques’ effects on an airline in the most extreme case, when a fare structure 
is completely unrestricted.    

Finally, the results of the simulation runs were presented in Chapter 5, focusing on the 
effects Hybrid Forecasting and Fare Adjustment had on an airline in a multiple fare 
structure, competitive environment.  In an effort to eliminate the need for FA scaling (a 
method used to vary the aggressiveness of the Fare Adjustment), an alternate FA 
formulation was introduced and tested in both network environments.  

6.1 Summary of Findings  

In general, the introduction of HF and FA into a RM system gives significant revenue 
improvement over the Seat Allocation Optimizer with standard forecasting.  The impact 
of both techniques depends upon the restrictions present in the multiple fare structures as 
well as the underlying demand in the network.  However, Fare Adjustment is sometimes 
detrimental as it overprotects seats and causes a large drop in load factor.  For an airline 
implementing FA to achieve its highest possible revenue, a FA scaling factor is used to 
coordinate FA’s aggressiveness with the demand segmentation ability of the fare 
structures.  

The first network where HF and FA were applied was Network S1.  Because the fare 
structures segment demand moderately well, the base case (EMSRb leg) gave a high total 
revenue for AL1.  However, the implementation of HF and FA with EMSRb and DAVN 
increased revenues 2.4% and 4.0%, respectively, over the base case.  A summary of the 
findings in Network S1 is shown in Figures 6-1 and 6-2 (FA scaling factor shown is the 
best case for that particular Seat Allocation Optimizer).   
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Figure 6-1: Revenue Results for AL1 EMSRb at DM=1.0 in Network S1 
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Figure 6-2: Revenue Results for AL1 DAVN at DM=1.0 in Network S1  

HF and FA give revenue gains over the base case, with DAVN seeing a greater percent 
increase in revenue along with higher total revenue.  This is to be expected, especially 
with Fare Adjustment considering FA was designed for use with the virtual classes 
constructed in the DAVN optimizer.  With the demand segmentation ability of Network 
S1, the best FA scaling factor for each optimizer is 0.25, which is the least aggressive FA 
approach tested.  In all but one case in Network S1, the addition of FA increases AL1’s 
revenue, with larger percent increases seen with DAVN.  Even though FA has a positive 
impact, the greatest revenue enhancer (between the two new RM techniques tested) 
comes from the forecasting approach of Hybrid Forecasting, which uses the price- and 
product-oriented classification to more accurately determine future bookings.  
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Figure 6-3: Revenue Results for AL1 EMSRb at DM=1.0 in Network S4  
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Figure 6-4: Revenue Results for AL1 DAVN at DM=1.0 in Network S4  
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Figure 6-5: Revenue Results for AL1 with IC Estimator at Different 
Demands in Network S4  

The overall pattern of large increases in revenue with the addition of Hybrid Forecasting 
and smaller increases with Fare Adjustment continues in Network S4, although the 
percent revenue increases over the base case are on the order of 20% (Figures 6-3 and 6-
4).  This occurs because of the reduced revenue of the base case due to the fully 
unrestricted LCC fare structure and the inability of EMSRb leg to force bookings in the 
higher classes in those markets.  The effect of HF and FA in lower demand environments 
was also tested, and as Figure 6-5 shows, the positive gains HF and FA generate decrease 
substantially as there is less demand overall in the network.    
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Figure 6-6: Revenue Results for AL1 when AL2 & AL4 Match AL1 RM 
Techniques in Network S4  

After showing that HF and FA generate large revenue increases for AL1, we wanted to 
examine the effect on AL1 when AL2 and AL4 (both using DAVN) matched AL1’s RM 
techniques.  Therefore, when AL1 implements HF, AL2 and AL4 are also given HF, and 
when AL1 uses HF and FA with its optimal FA scaling, AL2 and AL4 are also given HF 
and FA with their optimal FA scaling (0.25 in Network S4).  Much of the revenue that 
AL1 obtains when it’s the only airline utilizing the new RM techniques is given back to 
AL2 and AL4 when they are given more sophisticated systems.  When AL1 is using 
EMSRb, it loses over 3.5% of its revenue, and when it is using DAVN, it loses over 6% 
of its revenue.  Given the percentage of revenue loss is larger for DAVN, this is largely 
due to the higher revenue when AL1 is the only airline utilizing HF and FA with DAVN.  
It secures an even larger amount of revenue with HF and FA while utilizing DAVN and 
thus is in a position to have more of that revenue redistributed to other airlines in the 
network.  

Finally, an alternate FA formulation was tested in order to eliminate the need for FA 
scaling.  The results of this new methodology without scaling were mixed in both 
networks.  In Network S1, the alternate FA formulation outperformed the original method 
with both EMSRb and DAVN using the FP estimator, while in Network S4, EMSRb with 
the new methodology attained higher revenues irregardless of the sell-up estimator.  
However, in every case, the original FA formulation with an appropriate FA scaling 
factor generated higher revenues than either methodology without scaling.  

The results presented in this thesis allow some general conclusions to be made:  



    

109  

 
A lack of restrictions and demand segmentation ability in a network tends to 
lower revenues, but allows Hybrid Forecasting and Fare Adjustment to have a 
greater positive effect (as a percentage of baseline revenues) 

 
The largest revenue gains are obtained through the implementation of Hybrid 
Forecasting, and smaller gains may be possible with the correct scaling of Fare 
Adjustment 

 
The underlying network demand must be strong or the effectiveness of these new 
RM techniques becomes negated 

 

When competitors are using sophisticated RM systems, the addition of Hybrid 
Forecasting and Fare Adjustment still offer revenue improvements, but the gains 
are smaller than when competitors employ more sophisticated RM systems   

6.2 Future Research Directions  

In order to make the results presented in this thesis more applicable to the airline 
industry, sell-up estimators were used instead of user-defined sell-up values.  However, 
throughout the thesis, the results for a simulation run using either IC or FP were 
continuously mixed in terms of revenue gains.  A more rigorous method of estimating a 
passenger’s willingness-to-pay and subsequent sell-up probability is vital to the 
effectiveness of the HF and FA methods.  At this point, it is difficult to determine how 
much of an effect on revenues the sell-up estimators are having, but it is certainly obvious 
that for different fare structures and different employed RM techniques, different sell-up 
estimators give the highest revenues.  

Although Hybrid Forecasting was responsible for large jumps in revenue in almost every 
case shown, there is still an inherent price-oriented demand bias in the forecaster.  
Currently, any passenger who books in the lowest open class is categorized as price-
oriented, even though this passenger may have been looking for this exact fare product 
and it just happened to be the lowest open.  Refinements to this forecasting approach 
need to be developed which can overcome this bias and categorize passengers more 
effectively.  If this new forecaster can be created, it should be combined with Fare 
Adjustment and tested in PODS to compare with the current Hybrid Forecasting 
approach.  

In Chapter 3, the Marginal Revenue Transformation was described and the interaction 
between the price-/product-oriented demand and the adjusted fare was shown.  Although 
the results from the simulation runs generally supported this equation, different Seat 
Allocation Optimizers would maximize their revenues with different FA scaling factors, 
or different levels of FA aggressiveness.  More testing needs to be done to investigate the 
relationship between the Seat Allocation Optimizer, fare structures present in the 
network, and the level of FA aggressiveness.  Either this research needs to be conducted, 
or an effective FA methodology that does not require the use of scaling needs to be 
developed.  However, with the contributions of Fiig et al.69 and the results from this and 
other theses, finding the interactions of the network and the airline’s own RM system 
with the aggressiveness of the Fare Adjustment seems much more within reach.   
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